1
GATE CE 2007
MCQ (Single Correct Answer)
+2
-0.6
The inverse of $$2 \times 2$$ matrix $$\left[ {\matrix{ 1 & 2 \cr 5 & 7 \cr } } \right]$$ is
A
$${1 \over 3}\left[ {\matrix{ { - 7} & 2 \cr 5 & { - 1} \cr } } \right]$$
B
$${1 \over 3}\left[ {\matrix{ { 7} & 2 \cr 5 & { 1} \cr } } \right]$$
C
$${1 \over 3}\left[ {\matrix{ { 7} &- 2 \cr - 5 & { 1} \cr } } \right]$$
D
$${1 \over 3}\left[ {\matrix{ { - 7} & - 2 \cr - 5 & { - 1} \cr } } \right]$$
2
GATE CE 2007
MCQ (Single Correct Answer)
+2
-0.6
For what values of $$\alpha $$ and $$\beta $$ the following simultaneous equations have an infinite number of solutions $$$x+y+z=5,$$$ $$$x+3y+3z=9,$$$ $$$x + 2y + \alpha z = \beta $$$
A
$$2,7$$
B
$$3,8$$
C
$$8,3$$
D
$$7,2$$
3
GATE CE 2007
MCQ (Single Correct Answer)
+2
-0.6
The minimum and maximum eigen values of matrix $$\left[ {\matrix{ 1 & 1 & 3 \cr 1 & 5 & 1 \cr 3 & 1 & 1 \cr } } \right]$$ are $$-2$$ and $$6$$ respectively. What is the other eigen value?
A
$$5$$
B
$$3$$
C
$$1$$
D
$$-1$$
4
GATE CE 2007
MCQ (Single Correct Answer)
+2
-0.6
The velocity vector is given as $${\mkern 1mu} \vec V = 5xy\widehat i + 2{y^2}\widehat j + 3y{z^2}\widehat k.{\mkern 1mu} {\mkern 1mu} $$ The divergence of this velocity vector at $$(1,1,1)$$ is
A
$$9$$
B
$$10$$
C
$$14$$
D
$$15$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12