NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
VISIT NOW

WB JEE

Limits, Continuity and Differentiability

Mathematics

Previous Years Questions

MCQ (Single Correct Answer)

More
$$\mathop {\lim }\limits_{x \to \infty } \left( {{{{x^2} + 1} \over {x + 1}} - ax - b} \right),(a,b \in R)$$ = 0. Then...
WB JEE 2022
Let f : [a, b] $$\to$$ R be continuous in [a, b], differentiable in (a, b) and f(a) = 0 = f(b). Then
WB JEE 2022
$$\mathop {\lim }\limits_{x \to 0} \left( {{1 \over x}\ln \sqrt {{{1 + x} \over {1 - x}}} } \right)$$ is
WB JEE 2022
Let $$f(x) = {a_0} + {a_1}|x| + {a_2}|x{|^2} + {a_3}|x{|^3}$$, where $${a_0},{a_1},{a_2},{a_3}$$ are real constants. The...
WB JEE 2022
The values of a, b, c for which the function $$f(x) = \left\{ \matrix{ {{\sin (a + 1)x + \sin x} \over x},x 0 \hfill ...
WB JEE 2022
The $$\mathop {\lim }\limits_{x \to \infty } {\left( {{{3x - 1} \over {3x + 1}}} \right)^{4x}}$$ equals
WB JEE 2021
Let f : D $$\to$$ R where D = [$$-$$0, 1] $$\cup$$ [2, 4] be defined by $$f(x) = \left\{ {\matrix{ {x,} & {if} & {x \...
WB JEE 2021
Let $${S_n} = {\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + ....$$ to nth term. Then $$\math...
WB JEE 2021
If $$I = \mathop {\lim }\limits_{x \to 0} sin\left( {{{{e^x} - x - 1 - {{{x^2}} \over 2}} \over {{x^2}}}} \right)$$, the...
WB JEE 2021
$$\mathop {\lim }\limits_{x \to 1} \left( {{1 \over {1nx}} - {1 \over {(x - 1)}}} \right)$$
WB JEE 2020
Let $$0 < \alpha < \beta < 1$$. Then, $$\mathop {\lim }\limits_{n \to \infty } \int\limits_{1/(k + \beta )}^{...
WB JEE 2020
Let f : R $$ \to $$ R be twice continuously differentiable (or f" exists and is continuous) such that f(0) = f(1) = f'(0...
WB JEE 2020
If $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + cx} \over {1 - cx}}} \right)^{{1 \over x}}} = 4$$, then $$\mathop {...
WB JEE 2020
Let $$\phi (x) = f(x) + f(1 - x)$$ and $$f(x) < 0$$ in [0, 1], then
WB JEE 2020
The value of $$\mathop {\lim }\limits_{x \to {0^ + }} {x \over p}\left[ {{q \over x}} \right]$$ is
WB JEE 2019
A particle starts at the origin and moves 1 unit horizontally to the right and reaches P1, then it moves $${1 \over 2}$$...
WB JEE 2019
Let $$a = \min \{ {x^2} + 2x + 3:x \in R\} $$ and $$b = \mathop {\lim }\limits_{\theta \to 0} {{1 - \cos \theta } \over...
WB JEE 2019
$$\mathop {\lim }\limits_{x \to {0^ + }} {({e^x} + x)^{1/x}}$$
WB JEE 2019
The limit of the interior angle of a regular polygon of n sides as n $$ \to $$ $$\infty $$ is
WB JEE 2019
$$\mathop {\lim }\limits_{x \to {0^ + }} ({x^n}\ln x),\,n > 0$$
WB JEE 2019
Let $$f(x) = \left\{ {\matrix{ { - 2\sin x,} & {if\,x \le - {\pi \over 2}} \cr {A\sin x + B,} & {if\, ...
WB JEE 2018
Let f : R $$ \to $$ R be a twice continuously differentiable function such that f(0) = f(1) = f'(0) = 0. Then
WB JEE 2018
Let f : [a, b] $$ \to $$ R be such that f is differentiable in (a, b), f is continuous at x = a and x = b and moreover f...
WB JEE 2018
Let $$f(x) = 3{x^{10}} - 7{x^8} + 5{x^6} - 21{x^3} + 3{x^2} - 7$$. Then $$\mathop {\lim }\limits_{h \to 0} {{f(1 - h) - ...
WB JEE 2018
Let f : [a, b] $$ \to $$ R be differentiable on [a, b] and k $$ \in $$ R. Let f(a) = 0 = f(b). Also let J(x) = f'(x) + k...
WB JEE 2018
Let for all x > 0, $$f(x) = \mathop {\lim }\limits_{n \to \infty } n({x^{1/n}} - 1)$$, then
WB JEE 2017
$$\mathop {\lim }\limits_{x \to 0} {(\sin x)^{2\tan x}}$$ is equal to
WB JEE 2017
Let $$f(x) = \left\{ {\matrix{ {{{{x^p}} \over {{{(\sin x)}^q}}},} & {if\,0 < x \le {\pi \over 2}} \cr {...
WB JEE 2017
If f'' (0) = k, k $$ \ne $$ 0, then the value of $$\mathop {\lim }\limits_{x \to 0} {{2f(x) - 3f(2x) + f(4x)} \over {{x^...
WB JEE 2017
Consider the non-constant differentiable function f one one variable which obeys the relation $${{f(x)} \over {f(y)}} = ...
WB JEE 2017
The function f(x) = ax + b is strictly increasing for all real x if
WB JEE 2011
$$f(x) = \left\{ {\matrix{ {0,} & {x = 0} \cr {x - 3,} & {x > 0} \cr } } \right.$$ The function f(x) is...
WB JEE 2011
For the function $$f(x) = {e^{\cos x}}$$, Rolle's theorem is
WB JEE 2011
$$f(x) = \left\{ {\matrix{ {[x] + [ - x],} & {when\,x \ne 2} \cr {\lambda ,} & {when\,x = 0} \cr } } \right....
WB JEE 2011
If the function $$f(x) = \left\{ {\matrix{ {{{{x^2} - (A + 2)x + A} \over {x - 2}},} & {for\,x \ne 2} \cr {2,} &...
WB JEE 2011
$$\mathop {\lim }\limits_{x \to 0} {{\sin (\pi {{\sin }^2}x)} \over {{x^2}}} = $$
WB JEE 2011
The value of $$\mathop {\lim }\limits_{x \to 1} {{x + {x^2} + ..... + {x^n} - n} \over {x - 1}}$$ is
WB JEE 2011
In which of the following functions, Rolle's theorem is applicable?
WB JEE 2010
$$\mathop {\lim }\limits_{x \to 0} {{\sin |x|} \over x}$$ is equal to
WB JEE 2010
The value of f(0) so that the function $$f(x) = {{1 - \cos (1 - \cos x)} \over {{x^4}}}$$ is continuous everywhere is...
WB JEE 2010
If $$y = (1 + x)(1 + {x^2})(1 + {x^4})\,.....\,(1 + {x^{2n}})$$, then the value of $${\left( {{{dy} \over {dx}}} \right)...
WB JEE 2010
If $$f(5) = 7$$ and $$f'(5) = 7$$, then $$\mathop {\lim }\limits_{x \to 5} {{x\,f(5) - 5f(x)} \over {x - 5}}$$ is given ...
WB JEE 2010
The value of $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + 5{x^2}} \over {1 + 3{x^2}}}} \right)^{{1 \over {{x^2}}}}}...
WB JEE 2010
The value of $$\mathop {\lim }\limits_{x \to 0} {{{{\sin }^2}x + \cos x - 1} \over {{x^2}}}$$ is
WB JEE 2010
The value of $$\mathop {\lim }\limits_{x \to 1} {{\sin ({e^{x - 1}} - 1)} \over {\log x}}$$ is
WB JEE 2009
$$f(x) = x + |x|$$ is continuous for
WB JEE 2009
Let $$f(x) = {{\sqrt {x + 3} } \over {x + 1}}$$, then the value of $$\mathop {\lim }\limits_{x \to - 3 - 0} f(x)$$ is...
WB JEE 2009
A function f(x) is defined as follows for real x $$f(x) = \left\{ {\matrix{ {1 - {x^2}} & , & {for\,x 1} \cr } }...
WB JEE 2008
The $$\mathop {\lim }\limits_{x \to 2} {5 \over {\sqrt 2 - \sqrt x }}$$ is
WB JEE 2008
The value of the limit $$\mathop {\lim }\limits_{x \to 2} {{{e^{3x - 6}} - 1} \over {\sin (2 - x)}}$$ is
WB JEE 2008
Rolle's theorem is not applicable to the function $$f(x) = |x|$$ for $$ - 2 \le x \le 2$$ because
WB JEE 2008
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{{a^{\cot x}} - {a^{\cos x}}} \over {\cot x - \cos x}},a > 0$$
WB JEE 2008

MCQ (More than One Correct Answer)

More
$$\mathop {\lim }\limits_{n \to \infty } \left\{ {{{\sqrt n } \over {\sqrt {{n^3}} }} + {{\sqrt n } \over {\sqrt {{{(n +...
WB JEE 2021
Let $$f(x) = {1 \over 3}x\sin x - (1 - \cos \,x)$$. The smallest positive integer k such that $$\mathop {\lim }\limits_{...
WB JEE 2020
Consider the function $$f(x) = {{{x^3}} \over 4} - \sin \pi x + 3$$
WB JEE 2019
Let $$f:[1,3] \to R$$ be a continuous function that is differentiable in (1, 3) an f'(x) = | f(x) |2 + 4 for all x$$ \in...
WB JEE 2019
Let f : R $$ \to $$ R be twice continuously differentiable. Let f(0) = f(1) = f'(0) = 0. Then,
WB JEE 2017

Subjective

More
If f(a) = 2, f'(a) = 1, g(a) = $$-$$1 and g'(a) = 2, find the value of $$\mathop {\lim }\limits_{x \to a} {{g(x)f(a) - g...
WB JEE 2010
Use the formula $$\mathop {\lim }\limits_{x \to 0} {{{a^x} - 1} \over x} = {\log _e}a$$, to compute $$\mathop {\lim }\li...
WB JEE 2010
If N = n! (n $$\in$$ N, n > 2), then find $$\mathop {\lim }\limits_{N \to \infty } \left[ {{{({{\log }_2}N)}^{ - 1}} + {...
WB JEE 2010

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12