1
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

The solution set of $${{|x - 2|\, - 1} \over {|x - 2|\, - 2}} \le 0$$ is

A
[0, 1] $$\cup$$ (3, 4)
B
[0, 1] $$\cup$$ [3, 4]
C
[$$-$$1, 1] $$\cup$$ (3, 4]
D
None of these
2
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

Let $$f(x) = {x \over {\sqrt {1 + {x^2}} }}$$, $$\underbrace {fofofo.....of(x)}_{x\,times}$$ is

A
$${x \over {\sqrt {1 + \left( {\sum\limits_{r = 1}^n r } \right){x^2}} }}$$
B
$${x \over {\sqrt {1 + \left( {\sum\limits_{r = 1}^n 1 } \right){x^2}} }}$$
C
$${\left( {{x \over {\sqrt {1 + {x^2}} }}} \right)^x}$$
D
$${x \over {\sqrt {1 + n{x^2}} }}$$
BITSAT Subjects
EXAM MAP