1
KCET 2021
MCQ (Single Correct Answer)
+1
-0

The shaded region is the solution set of the inequalities

KCET 2021 Mathematics - Linear Programming Question 11 English

A
$$5 x+4 y \geq 20, x \leq 6, y \geq 3, x \geq 0, y \geq 0$$
B
$$5 x+4 y \leq 20, x \leq 6, y \leq 3, x \geq 0, y \geq 0$$
C
$$5 x+4 y \geq 20, x \leq 6, y \leq 3, x \geq 0, y \geq 0$$
D
$$5 x+4 y \geq 20, x \geq 6, y \leq 3, x \geq 0, y \geq 0$$
2
KCET 2020
MCQ (Single Correct Answer)
+1
-0

Corner points of the feasible region determined by the system of linear constraints are $$(0,3),(1,1)$$ and $$(3,0)$$. Let $$z=p x=q y$$, where, $$p, q>0$$. Condition on $$p$$ and $$q$$, so that the minimum of $$z$$ occurs at $$(3,0)$$ and $$(1,1)$$ is

A
$$p=2 q$$
B
$$p=\frac{q}{2}$$
C
$$p=3 q$$
D
$$p=q$$
3
KCET 2020
MCQ (Single Correct Answer)
+1
-0

The feasible region of an LPP is shown in the figure. If $$z=11 x+7 y$$, then the maximum value of $$Z$$ occurs at

KCET 2020 Mathematics - Linear Programming Question 9 English

A
(0, 5)
B
(3, 3)
C
(5, 0)
D
(3, 2)
4
KCET 2019
MCQ (Single Correct Answer)
+1
-0

The shaded region in the figure is the solution set of the inequations.

KCET 2019 Mathematics - Linear Programming Question 8 English

A
$$4 x+5 y \leq 20,3 x+10 y \leq 30, x \leq 6, x, y \geq 0$$
B
$$4 x+5 y \geq 20,3 x+10 y \leq 30, x \leq 6, x, y \geq 0$$
C
$$4 x+5 y \leq 20,3 x+10 y \leq 30, x \geq 6, x, y \geq 0$$
D
$$4 x+5 y \geq 20,3 x+10 y \leq 30, x \geq 6, x, y \geq 0$$
KCET Subjects
EXAM MAP