Definite Integration · Mathematics · KCET
Start PracticeMCQ (Single Correct Answer)
KCET 2024
$\int_{-\pi}^\pi\left(1-x^2\right) \sin x \cdot \cos ^2 x d x$ is
KCET 2024
$\int\limits_1^5(|x-3|+|1-x|) d x=$
KCET 2023
$$\int\limits_2^8 \frac{5^{\sqrt{10-x}}}{5^{\sqrt{x}}+5^{\sqrt{10-x}}} d x \text { is equals to :}$$
KCET 2023
$$\int_{-2}^0\left(x^3+3 x^2+3 x+3+(x+1) \cos (x+1)\right) d x$$ is equals to
KCET 2023
$$\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot \operatorname{cosec} x} d x$$ is equals to
KCET 2022
If $$[x]$$ is the greatest integer function not greater than $$x$$, then $$\int_\limits0^8[x] d x$$ is equal to
KCET 2022
$$\int_0^{\pi / 2} \sqrt{\sin \theta} \cos ^3 \theta d \theta$$ is equal to
KCET 2022
$$\int_0^1 \frac{x e^x}{(2+x)^3} d x$$ is equal to
KCET 2022
Evaluate $$\int_\limits2^3 x^2 d x$$ as the limit of a sum
KCET 2022
$$\int_0^{\pi / 2} \frac{\cos x \sin x}{1+\sin x} d x$$ is equal to
KCET 2021
If $$I_n=\int_0^{\frac{\pi}{4}} \tan ^n x d x$$, where $$n$$ is positive integer, then $$I_{10}+I_8$$ is equal to
KCET 2021
The value of $$\int_0^{4042} \frac{\sqrt{x} d x}{\sqrt{x}+\sqrt{4042-x}}$$ is equal to
KCET 2020
The value of $$\int_{-1 / 2}^{1 / 2} \cos ^{-1} x d x$$ is
KCET 2020
Find the value of $$\int_0^1 \frac{\log (1+x)}{1+x^2} d x$$ is
KCET 2020
The value of $$\int_{-\pi / 2}^{\pi / 2} \frac{\cos x}{1+e^x} d x$$ is
KCET 2019
$$\int_\limits{-3}^3 \cot ^{-1} x d x=$$
KCET 2019
$$\int_\limits0^2\left[x^2\right] d x=$$
KCET 2019
$$\int_\limits0^1 \sqrt{\frac{1+x}{1-x}} d x=$$