Limits, Continuity and Differentiability · Mathematics · KCET
Start PracticeMCQ (Single Correct Answer)
KCET 2024
$\lim \limits_{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}$ is equal to
KCET 2024
Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x & 2 x \\ \sin x & x & x\end{array}\right|$. Then, $\lim _\limits{x \rightarrow 0} \fr...
KCET 2024
The function $f(x)=|\cos x|$ is
KCET 2024
$$\lim _\limits{n \rightarrow \infty}\left(\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\frac{n}{n^2+3^2}+\ldots+\frac{1}{5 n}\right)=
$$
KCET 2023
If $$\lim _\limits{x \rightarrow 0} \frac{\sin (2+x)-\sin (2-x)}{x}=A \cos B$$, then the values of $$A$$ and $$B$$ respectively are
KCET 2023
The function $$f(x)=\cot x$$ is discontinuous on every point of the set
KCET 2022
If $$f(x)=\left\{\begin{array}{cc}x^2-1, & 0
the quadratic equation whose roots are $$\lim _\limits{x \rightarrow 2^{-}} f(x)$$ and $$\lim _\limits{x ...
KCET 2022
$$\lim _\limits{y \rightarrow 0} \frac{\sqrt{3+y^3}-\sqrt{3}}{y^3}=$$
KCET 2021
Consider the following statements
statement 1: $$\lim _\limits{x \rightarrow 1} \frac{a x^2+b x+c}{x^2+b x+a}$$ is 1
(where $$a+b+c \neq 0$$).
stateme...
KCET 2021
If $$f(x)=\left|\begin{array}{ccc}\cos x & 1 & 0 \\ 0 & 2 \cos x & 3 \\ 0 & 1 & 2 \cos x\end{array}\right|$$, then $$\lim _\limits{x \rightarrow \pi} ...
KCET 2021
At $$x=1$$, the function
$$f(x)=\left\{\begin{array}{cc}
x^3-1, & 1...
KCET 2020
The right hand and left hand limit of the function are respectively.
$$f(x)=\left\{\begin{array}{cc}
\frac{e^{1 / x}-1}{e^{1 / x}+1}, & \text { if } x...
KCET 2020
$$\lim _\limits{x \rightarrow 0}\left(\frac{\tan x}{\sqrt{2 x+4}-2}\right) \text { is equal to }$$
KCET 2020
If $$f(x)=\left\{\begin{array}{cc}\frac{1-\cos K x}{x \sin x}, & \text { if } x \neq 0 \\ \frac{1}{2}, & \text { if } x=0\end{array}\right.$$ is conti...
KCET 2019
If $$f(x)=\left\{\begin{array}{cl}\frac{\sin 3 x}{e^{2 x}-1} ; & x \neq 0 \\ k-2 ; & x=0\end{array}\right.$$ is continuous at $$x=0$$, then $$k=$$...
KCET 2019
$$\sum_\limits{r=1}^n(2 r-1)=x$$ then, $$
\lim _\limits{n \rightarrow \infty}\left[\frac{1^3}{x^2}+\frac{2^3}{x^2}+\frac{3^3}{x^2}+\ldots+\frac{n^3}{x...
KCET 2019
Rolle's theorem is not applicable in which one of the following cases?