Limits, Continuity and Differentiability · Mathematics · KCET

Start Practice

MCQ (Single Correct Answer)

1
$\lim _{x \rightarrow 1} \frac{x^4-\sqrt{x}}{\sqrt{x}-1}$ is
KCET 2025
2

Match the following:

In the following, $[\mathrm{x}]$ denotes the greatest integer less than or equal to x .

Column - I Column - II
(a) x | x | x | x | x|x| (i) continuous in (-1, 1)
(b) | x | | x | sqrt(|x|) (ii) differentiable in (-1, 1)
(c) x + [ x ] x + [ x ] x+[x] (iii) strictly increasing in (-1, 1)
(d) | x 1 | + | x + 1 | | x 1 | + | x + 1 | |x-1|+|x+1| (iv) not differentiable at, at least one point in (-1, 1)
KCET 2025
3

The function $f(x)=\left\{\begin{array}{ll}e^x+a x & , x<0 \\ b(x-1)^2 & , x \geq 0\end{array}\right.$ is differentiable at $x=0$. Then

KCET 2025
4

$$ \text { A function } f(x)=\left\{\begin{array}{cl} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 \end{array}\right. $$

KCET 2025
5

$\lim \limits_{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}$ is equal to

KCET 2024
6

Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x & 2 x \\ \sin x & x & x\end{array}\right|$. Then, $\lim _\limits{x \rightarrow 0} \frac{f(x)}{x^2}$ is

KCET 2024
7

The function $f(x)=|\cos x|$ is

KCET 2024
8

$$\lim _\limits{n \rightarrow \infty}\left(\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\frac{n}{n^2+3^2}+\ldots+\frac{1}{5 n}\right)= $$

KCET 2024
9

If $$\lim _\limits{x \rightarrow 0} \frac{\sin (2+x)-\sin (2-x)}{x}=A \cos B$$, then the values of $$A$$ and $$B$$ respectively are

KCET 2023
10

The function $$f(x)=\cot x$$ is discontinuous on every point of the set

KCET 2023
11

If $$f(x)=\left\{\begin{array}{cc}x^2-1, & 0< x<2 \\ 2 x+3, & 2 \leq x<3\end{array}\right.$$,

the quadratic equation whose roots are $$\lim _\limits{x \rightarrow 2^{-}} f(x)$$ and $$\lim _\limits{x \rightarrow 2^{+}} f(x)$$ is

KCET 2022
12

$$\lim _\limits{y \rightarrow 0} \frac{\sqrt{3+y^3}-\sqrt{3}}{y^3}=$$

KCET 2022
13

Consider the following statements

Statement 1 : $$\lim _\limits{x \rightarrow 1} \frac{a x^2+b x+c}{x^2+b x+a}$$ is 1

(where $$a+b+c \neq 0$$).

Statement 2 : $$\lim _\limits{x \rightarrow -2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}$$ is $$\frac{1}{4}$$.

KCET 2021
14

If $$f(x)=\left|\begin{array}{ccc}\cos x & 1 & 0 \\ 0 & 2 \cos x & 3 \\ 0 & 1 & 2 \cos x\end{array}\right|$$, then $$\lim _\limits{x \rightarrow \pi} f(x)$$ is equal to

KCET 2021
15

At $$x=1$$, the function

$$f(x)=\left\{\begin{array}{cc} x^3-1, & 1< x < \infty \\ x-1, & -\infty< x \leq 1 \end{array}\right. \text { is }$$

KCET 2021
16

The right hand and left hand limit of the function are respectively.

$$f(x)=\left\{\begin{array}{cc} \frac{e^{1 / x}-1}{e^{1 / x}+1}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 \end{array}\right.$$

KCET 2020
17

$$\lim _\limits{x \rightarrow 0}\left(\frac{\tan x}{\sqrt{2 x+4}-2}\right) \text { is equal to }$$

KCET 2020
18

If $$f(x)=\left\{\begin{array}{cc}\frac{1-\cos K x}{x \sin x}, & \text { if } x \neq 0 \\ \frac{1}{2}, & \text { if } x=0\end{array}\right.$$ is continuous at $$x=0$$, then the value of $$K$$ is

KCET 2020
19

If $$f(x)=\left\{\begin{array}{cl}\frac{\sin 3 x}{e^{2 x}-1} ; & x \neq 0 \\ k-2 ; & x=0\end{array}\right.$$ is continuous at $$x=0$$, then $$k=$$

KCET 2019
20

$$\sum_\limits{r=1}^n(2 r-1)=x$$ then, $$ \lim _\limits{n \rightarrow \infty}\left[\frac{1^3}{x^2}+\frac{2^3}{x^2}+\frac{3^3}{x^2}+\ldots+\frac{n^3}{x^2}\right]=$$

KCET 2019
21

Rolle's theorem is not applicable in which one of the following cases?

KCET 2019
22
The value of $\lim \limits_{x \rightarrow 0} \frac{[x]}{x}$ is :
KCET 2018
23

If $f(x)=\left\{\begin{array}{clc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} & \text { if }-1 \leq x<0 \\ \frac{2 x+1}{x-1} & \text { if } 0 \leq x \leq 1\end{array}\right.$

is continuous at $x=0$, then the value of $k$ is

KCET 2018
24

If $f(x)=\left\{\begin{array}{cl}\frac{\log _e x}{x-1} & ; x \neq 1 \\ k & ; x=1\end{array}\right.$

is continuous at $x=1$, then the value of $k$ is

KCET 2018
25

$$The\,\,value\,\,of\,\,\mathop {\lim }\limits_{\theta \to 0} {{1 - \cos 4\theta } \over {1 - \cos 6\theta }}\,\,is$$

KCET 2017
26
If $f(x)=\left\{\begin{array}{cll}k x^2 & \text { if } & x \leq 2 \\ 3 & \text { if } & x>2\end{array}\right.$ is continuous at $x=2$, then the value of $k$ is
KCET 2017
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12