Limits, Continuity and Differentiability · Mathematics · KCET

Start Practice

MCQ (Single Correct Answer)

KCET 2024
$\lim \limits_{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}$ is equal to
KCET 2024
Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x & 2 x \\ \sin x & x & x\end{array}\right|$. Then, $\lim _\limits{x \rightarrow 0} \fr...
KCET 2024
The function $f(x)=|\cos x|$ is
KCET 2024
$$\lim _\limits{n \rightarrow \infty}\left(\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\frac{n}{n^2+3^2}+\ldots+\frac{1}{5 n}\right)= $$
KCET 2023
If $$\lim _\limits{x \rightarrow 0} \frac{\sin (2+x)-\sin (2-x)}{x}=A \cos B$$, then the values of $$A$$ and $$B$$ respectively are
KCET 2023
The function $$f(x)=\cot x$$ is discontinuous on every point of the set
KCET 2022
If $$f(x)=\left\{\begin{array}{cc}x^2-1, & 0 the quadratic equation whose roots are $$\lim _\limits{x \rightarrow 2^{-}} f(x)$$ and $$\lim _\limits{x ...
KCET 2022
$$\lim _\limits{y \rightarrow 0} \frac{\sqrt{3+y^3}-\sqrt{3}}{y^3}=$$
KCET 2021
Consider the following statements statement 1: $$\lim _\limits{x \rightarrow 1} \frac{a x^2+b x+c}{x^2+b x+a}$$ is 1 (where $$a+b+c \neq 0$$). stateme...
KCET 2021
If $$f(x)=\left|\begin{array}{ccc}\cos x & 1 & 0 \\ 0 & 2 \cos x & 3 \\ 0 & 1 & 2 \cos x\end{array}\right|$$, then $$\lim _\limits{x \rightarrow \pi} ...
KCET 2021
At $$x=1$$, the function $$f(x)=\left\{\begin{array}{cc} x^3-1, & 1...
KCET 2020
The right hand and left hand limit of the function are respectively. $$f(x)=\left\{\begin{array}{cc} \frac{e^{1 / x}-1}{e^{1 / x}+1}, & \text { if } x...
KCET 2020
$$\lim _\limits{x \rightarrow 0}\left(\frac{\tan x}{\sqrt{2 x+4}-2}\right) \text { is equal to }$$
KCET 2020
If $$f(x)=\left\{\begin{array}{cc}\frac{1-\cos K x}{x \sin x}, & \text { if } x \neq 0 \\ \frac{1}{2}, & \text { if } x=0\end{array}\right.$$ is conti...
KCET 2019
If $$f(x)=\left\{\begin{array}{cl}\frac{\sin 3 x}{e^{2 x}-1} ; & x \neq 0 \\ k-2 ; & x=0\end{array}\right.$$ is continuous at $$x=0$$, then $$k=$$...
KCET 2019
$$\sum_\limits{r=1}^n(2 r-1)=x$$ then, $$ \lim _\limits{n \rightarrow \infty}\left[\frac{1^3}{x^2}+\frac{2^3}{x^2}+\frac{3^3}{x^2}+\ldots+\frac{n^3}{x...
KCET 2019
Rolle's theorem is not applicable in which one of the following cases?
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12