Limits, Continuity and Differentiability · Mathematics · KCET

Start Practice

MCQ (Single Correct Answer)

1

$\lim \limits_{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}$ is equal to

KCET 2024
2

Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x & 2 x \\ \sin x & x & x\end{array}\right|$. Then, $\lim _\limits{x \rightarrow 0} \frac{f(x)}{x^2}$ is

KCET 2024
3

The function $f(x)=|\cos x|$ is

KCET 2024
4

$$\lim _\limits{n \rightarrow \infty}\left(\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\frac{n}{n^2+3^2}+\ldots+\frac{1}{5 n}\right)= $$

KCET 2024
5

If $$\lim _\limits{x \rightarrow 0} \frac{\sin (2+x)-\sin (2-x)}{x}=A \cos B$$, then the values of $$A$$ and $$B$$ respectively are

KCET 2023
6

The function $$f(x)=\cot x$$ is discontinuous on every point of the set

KCET 2023
7

If $$f(x)=\left\{\begin{array}{cc}x^2-1, & 0< x<2 \\ 2 x+3, & 2 \leq x<3\end{array}\right.$$,

the quadratic equation whose roots are $$\lim _\limits{x \rightarrow 2^{-}} f(x)$$ and $$\lim _\limits{x \rightarrow 2^{+}} f(x)$$ is

KCET 2022
8

$$\lim _\limits{y \rightarrow 0} \frac{\sqrt{3+y^3}-\sqrt{3}}{y^3}=$$

KCET 2022
9

Consider the following statements

statement 1: $$\lim _\limits{x \rightarrow 1} \frac{a x^2+b x+c}{x^2+b x+a}$$ is 1

(where $$a+b+c \neq 0$$).

statement 2: $$\lim _\limits{x \rightarrow -2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}$$ is $$\frac{1}{4}$$.

KCET 2021
10

If $$f(x)=\left|\begin{array}{ccc}\cos x & 1 & 0 \\ 0 & 2 \cos x & 3 \\ 0 & 1 & 2 \cos x\end{array}\right|$$, then $$\lim _\limits{x \rightarrow \pi} f(x)$$ is equal to

KCET 2021
11

At $$x=1$$, the function

$$f(x)=\left\{\begin{array}{cc} x^3-1, & 1< x < \infty \\ x-1, & -\infty< x \leq 1 \end{array}\right. \text { is }$$

KCET 2021
12

The right hand and left hand limit of the function are respectively.

$$f(x)=\left\{\begin{array}{cc} \frac{e^{1 / x}-1}{e^{1 / x}+1}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 \end{array}\right.$$

KCET 2020
13

$$\lim _\limits{x \rightarrow 0}\left(\frac{\tan x}{\sqrt{2 x+4}-2}\right) \text { is equal to }$$

KCET 2020
14

If $$f(x)=\left\{\begin{array}{cc}\frac{1-\cos K x}{x \sin x}, & \text { if } x \neq 0 \\ \frac{1}{2}, & \text { if } x=0\end{array}\right.$$ is continuous at $$x=0$$, then the value of $$K$$ is

KCET 2020
15

If $$f(x)=\left\{\begin{array}{cl}\frac{\sin 3 x}{e^{2 x}-1} ; & x \neq 0 \\ k-2 ; & x=0\end{array}\right.$$ is continuous at $$x=0$$, then $$k=$$

KCET 2019
16

$$\sum_\limits{r=1}^n(2 r-1)=x$$ then, $$ \lim _\limits{n \rightarrow \infty}\left[\frac{1^3}{x^2}+\frac{2^3}{x^2}+\frac{3^3}{x^2}+\ldots+\frac{n^3}{x^2}\right]=$$

KCET 2019
17

Rolle's theorem is not applicable in which one of the following cases?

KCET 2019
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12