1
KCET 2023
+1
-0

The shaded region in the figure given is the solution of which of the inequations?

A
$$x+y \geq 7,2 x-3 y+6 \leq 0, x \geq 0, y \geq 0$$
B
$$x+y \geq 7,2 x-3 y+6 \geq 0, x \geq 0, y \geq 0$$
C
$$x+y \leq 7,2 x-3 y+6 \leq 0, x \geq 0, y \geq 0$$
D
$$x+y \leq 7,2 x-3 y+6 \geq 0, x \geq 0, y \geq 0$$
2
KCET 2022
+1
-0

The corner points of the feasible region of an LPP are $$(0,2),(3,0),(6,0),(6,8)$$ and $$(0,5)$$, then the minimum value of $$z=4 x+6 y$$ occurs at

A
Finite number of points
B
Infinite number of points
C
Only one point
D
Only two points
3
KCET 2022
+1
-0

A dietician has to develop a special diet using two foods $$X$$ and $$Y$$. Each packet (containing $$30 \mathrm{~g}$$ ) of food. $$X$$ contains 12 units of calcium, 4 units of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity of food Y contains 3 units of calcium, 20 units of iron, 4 units of cholesterol and 3 units of vitamin A. The diet requires at least 240 units of calcium, atleast 460 units of iron and atmost 300 units of cholesterol. The corner points of the feasible region are

A
$$(2,72),(40,15),(15,20)$$
B
$$(2,72),(15,20),(0,23)$$
C
$$(0,23),(40,15),(2,72)$$
D
$$(2,72),(40,15),(115,0)$$
4
KCET 2021
+1
-0

The shaded region is the solution set of the inequalities

A
$$5 x+4 y \geq 20, x \leq 6, y \geq 3, x \geq 0, y \geq 0$$
B
$$5 x+4 y \leq 20, x \leq 6, y \leq 3, x \geq 0, y \geq 0$$
C
$$5 x+4 y \geq 20, x \leq 6, y \leq 3, x \geq 0, y \geq 0$$
D
$$5 x+4 y \geq 20, x \geq 6, y \leq 3, x \geq 0, y \geq 0$$
EXAM MAP
Medical
NEET