1
KCET 2024
MCQ (Single Correct Answer)
+1
-0

The vectors $\mathbf{A B}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{k}}$ and $\mathbf{A C}=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ are the sides of a $\triangle A B C$, The length of the median through $A$ is

A
$\sqrt{18}$
B
$\sqrt{72}$
C
$\sqrt{33}$
D
$\sqrt{288}$
2
KCET 2024
MCQ (Single Correct Answer)
+1
-0

The volume of the parallelopiped whose co terminous edges are $\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+\hat{\mathbf{j}}$ is

A
6 cu units
B
2 cu units
C
4 cu units
D
3 cu units
3
KCET 2024
MCQ (Single Correct Answer)
+1
-0

Let $\mathbf{a}$ and $\mathbf{b}$ be two unit vectors and $\theta$ is the angle between them. Then, $\mathbf{a}+\mathbf{b}$ is a unit vector, if

A
$\theta=\frac{\pi}{4}$
B
$\theta=\frac{\pi}{3}$
C
$\theta=\frac{2 \pi}{3}$
D
$\theta=\frac{\pi}{2}$
4
KCET 2024
MCQ (Single Correct Answer)
+1
-0

If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are three non-coplanar vectors and $p, q$ and $r$ are vectors defined by $\mathbf{p}=\frac{\mathbf{a} \times \mathbf{c}}{[\mathbf{a b c}]}, \mathbf{q}=\frac{\mathbf{c} \times \mathbf{a}}{[\mathbf{a b c} \mathbf{b}}, \mathbf{r}=\frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \mathbf{b}]}$, then $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{p}+(\mathbf{b}+\mathbf{c}) \cdot \mathbf{q}+(\mathbf{c}+\mathbf{a}) \cdot \mathbf{r}$ is

A
0
B
1
C
2
D
3
KCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12