Corner points of the feasible region for an LPP are $(0,2),(3,0),(6,0),(6,8)$ and $(0,5)$. Let $Z=4 x+6 y$ be the objective function. The minimum value of $z$ occurs at
The shaded region in the figure given is the solution of which of the inequations?
The corner points of the feasible region of an LPP are $$(0,2),(3,0),(6,0),(6,8)$$ and $$(0,5)$$, then the minimum value of $$z=4 x+6 y$$ occurs at
A dietician has to develop a special diet using two foods $$X$$ and $$Y$$. Each packet (containing $$30 \mathrm{~g}$$ ) of food. $$X$$ contains 12 units of calcium, 4 units of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity of food Y contains 3 units of calcium, 20 units of iron, 4 units of cholesterol and 3 units of vitamin A. The diet requires at least 240 units of calcium, atleast 460 units of iron and atmost 300 units of cholesterol. The corner points of the feasible region are