Functions · Mathematics · KCET
Start PracticeMCQ (Single Correct Answer)
KCET 2024
If $[x]^2-5[x]+6=0$, where $[x]$ denotes the greatest integer function, then
KCET 2024
Let $f: R \rightarrow R$ be defined by $f(x)=x^2+1$. Then, the pre images of 17 and $-$3 , respectively are
KCET 2024
Let $(g \circ f)(x)=\sin x$ and $f \circ g(x)=(\sin \sqrt{x})^2$. Then,
KCET 2024
Let the function satisfy the equation $f(x+y)=f(x) f(y)$ for all $x, y \in R$, where $f(0) \neq 0$. If $f(5)=3$ and $f^{\prime}(0)=2$, then $f^{\prime...
KCET 2023
If $$f(x)=a x+b$$, where $$a$$ and $$b$$ are integers, $$f(-1)=-5$$ and $$f(3)=3$$, then $$a$$ and $$b$$ are respectively
KCET 2023
$$f: R \rightarrow R$$ and $$g:[0, \infty) \rightarrow R$$ defined by $$f(x)=x^2$$ and $$g(x)=\sqrt{x}$$. Which one of the following is not true?...
KCET 2023
Let $$f: R \rightarrow R$$ be defined by $$f(x)=3 x^2-5$$ and $$g: R \rightarrow R$$ by $$g(x)=\frac{x}{x^2+1}$$, then $$g \circ f$$ is
KCET 2023
Let $$f(x)=\sin 2 x+\cos 2 x$$ and $$g(x)=x^2-1$$ then $$g(f(x))$$ is invertible in the domain
KCET 2023
If the function is $$f(x)=\frac{1}{x+2}$$, then the point of discontinuity of the composite function $$y=f(f(x))$$ is
KCET 2022
The domain of the function $$f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}$$ is
KCET 2022
If $$f: R \rightarrow R$$ be defined by
$$f(x)=\left\{\begin{array}{llc}
2 x: & x>3 \\
x^2: & 1
then $$f(-1)+f(2)+f(4)$$ is...
KCET 2021
Domain of $$f(x)=\frac{x}{1-|x|}$$ is
KCET 2021
$$f: R \rightarrow R$$ defined by $$f(x)$$ is equal to $$\left\{\begin{array}{l}2 x, x> 3 \\ x^2, 1...
KCET 2021
Let $$A=\{x: x \in R, x$$ is not a positive integer) Define $$f: A \rightarrow R$$ as $$f(x)=\frac{2 x}{x-1}$$, then $$f$$ is
KCET 2021
The function $$f(x)=\sqrt{3} \sin 2 x-\cos 2 x+4$$ is one-one in the interval
KCET 2021
Domain of the function
$$f(x)=\frac{1}{\sqrt{\left[x^2\right]-[x]-6}},$$
where $$[x]$$ is greatest integer $$\leq x$$ is
KCET 2020
Let $$f:[2, \infty) \rightarrow R$$ be the function defined $$f(x)=x^2-4 x+5$$, then the ranges of $$f$$ is
KCET 2019
$$f: R \rightarrow R$$ and $$g:[0, \infty) \rightarrow R$$ is defined by $$f(x)=x^2$$ and $$g(x)=\sqrt{x}$$. Which one of the following is not true?...
KCET 2019
If $$|3 x-5| \leq 2$$ then
KCET 2019
The value of $$\sqrt{24.99}$$ is
KCET 2019
The domain of the function $$f: R \rightarrow R$$ defined by $$f(x)=\sqrt{x^2-7 x+12}$$ is