Functions · Mathematics · KCET

Start Practice

MCQ (Single Correct Answer)

1

Domain of the function $f$, given by $f(x)=\frac{1}{\sqrt{(x-2)(x-5)}}$ is

KCET 2025
2

If $f(x)=\sin \left[\pi^2\right] x-\sin \left[-\pi^2\right] x$, where $[x]=$ greatest integer $\leq x$, then which of the following is not true?

KCET 2025
3

Let the functions " f " and " g " be $\mathrm{f}:\left[0, \frac{\pi}{2}\right] \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $\mathrm{g}:\left[0, \frac{\pi}{2}\right] \rightarrow \mathrm{R}$ given by $g(x)=\cos x$, where $R$ is the set of real numbers

Consider the following statements:

Statement (I): $f$ and $g$ are one-one

Statement (II): $\mathrm{f}+\mathrm{g}$ is one-one

Which of the following is correct?

KCET 2025
4

If $[x]^2-5[x]+6=0$, where $[x]$ denotes the greatest integer function, then

KCET 2024
5

Let $f: R \rightarrow R$ be defined by $f(x)=x^2+1$. Then, the pre images of 17 and $-$3 , respectively are

KCET 2024
6

Let $(g \circ f)(x)=\sin x$ and $f \circ g(x)=(\sin \sqrt{x})^2$. Then,

KCET 2024
7

Let the function satisfy the equation $f(x+y)=f(x) f(y)$ for all $x, y \in R$, where $f(0) \neq 0$. If $f(5)=3$ and $f^{\prime}(0)=2$, then $f^{\prime}(5)$ is

KCET 2024
8

If $$f(x)=a x+b$$, where $$a$$ and $$b$$ are integers, $$f(-1)=-5$$ and $$f(3)=3$$, then $$a$$ and $$b$$ are respectively

KCET 2023
9

$$f: R \rightarrow R$$ and $$g:[0, \infty) \rightarrow R$$ defined by $$f(x)=x^2$$ and $$g(x)=\sqrt{x}$$. Which one of the following is not true?

KCET 2023
10

Let $$f: R \rightarrow R$$ be defined by $$f(x)=3 x^2-5$$ and $$g: R \rightarrow R$$ by $$g(x)=\frac{x}{x^2+1}$$, then $$g \circ f$$ is

KCET 2023
11

Let $$f(x)=\sin 2 x+\cos 2 x$$ and $$g(x)=x^2-1$$ then $$g(f(x))$$ is invertible in the domain

KCET 2023
12

If the function is $$f(x)=\frac{1}{x+2}$$, then the point of discontinuity of the composite function $$y=f(f(x))$$ is

KCET 2023
13

The domain of the function $$f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}$$ is

KCET 2022
14

If $$f: R \rightarrow R$$ be defined by

$$f(x)=\left\{\begin{array}{llc} 2 x: & x>3 \\ x^2: & 1< x \leq 3 \\ 3 x: & x \leq 1 \end{array}\right.$$

then $$f(-1)+f(2)+f(4)$$ is

KCET 2022
15

Domain of $$f(x)=\frac{x}{1-|x|}$$ is

KCET 2021
16

$$f: R \rightarrow R$$ defined by $$f(x)$$ is equal to $$\left\{\begin{array}{l}2 x, x> 3 \\ x^2, 1< x \leq 3, \text { then } f(-2)+f(3)+f(4) \text { is } \\ 3 x, x \leq 1\end{array}\right.$$

KCET 2021
17

Let $$A=\{x: x \in R, x$$ is not a positive integer) Define $$f: A \rightarrow R$$ as $$f(x)=\frac{2 x}{x-1}$$, then $$f$$ is

KCET 2021
18

The function $$f(x)=\sqrt{3} \sin 2 x-\cos 2 x+4$$ is one-one in the interval

KCET 2021
19

Domain of the function

$$f(x)=\frac{1}{\sqrt{\left[x^2\right]-[x]-6}},$$

where $$[x]$$ is greatest integer $$\leq x$$ is

KCET 2021
20

Let $$f:[2, \infty) \rightarrow R$$ be the function defined $$f(x)=x^2-4 x+5$$, then the ranges of $$f$$ is

KCET 2020
21

$$f: R \rightarrow R$$ and $$g:[0, \infty) \rightarrow R$$ is defined by $$f(x)=x^2$$ and $$g(x)=\sqrt{x}$$. Which one of the following is not true?

KCET 2019
22

If $$|3 x-5| \leq 2$$ then

KCET 2019
23

The value of $$\sqrt{24.99}$$ is

KCET 2019
24

The domain of the function $$f: R \rightarrow R$$ defined by $$f(x)=\sqrt{x^2-7 x+12}$$ is

KCET 2019
25
If $|x+5| \geq 10$, then
KCET 2018
26
Let $f(x)=x-\frac{1}{x}$, then $f(-1)$ is
KCET 2018
27
Let $f, g: R \rightarrow R$ be two functions defined as $f(x)=|x|+x$ and $g(x)=|x|-x \forall x \in R$. Then $(f \circ g)(x)$ for $x<0$ is
KCET 2018
28
A is a set having 6 distinct elements. The number of distinct functions from $A$ to $A$ which are not bijections is
KCET 2018
29

Let $f: R \rightarrow R$ be defined by
$f(x)=\left\{\begin{array}{lc}2 x ; & x > 3 \\ x^2 ; & 1 < x \leq 3 . \text { Then } \\ 3 x ; & x \leq 1\end{array}\right.$

$$ f(-1)+f(2)+f(4) \text { is }$$

KCET 2018
30
Let $f: R \rightarrow R$ be defined by $f(x)=x^4$, then
KCET 2017
31
If $f(x)=8 x^3, g(x)=x^{1 / 3}$, then $f \circ g(x)$ is
KCET 2017
32
If $|x-2| \leq 1$, then
KCET 2017
33
Binary operation * on $R-\{-1\}$ defined by $a^* b=\frac{a}{b+1}$ is
KCET 2017
34
The range of the function $f(x)=\sqrt{9-x^2}$ is
KCET 2017
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12