1
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

Let f(x) = x $$-$$ 3, g(x) = 4 $$-$$ x. Then the set of values of x for which $$|f(x) + g(x)|\, < \,|f(x)| + |g(x)|$$ is true, is given by :

A
R
B
R $$-$$ (3, 4)
C
R $$-$$ [3, 4]
D
None of these
2
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

$$\left\{ {x \in R:{{2x - 1} \over {{x^3} + 4{x^2} + 3x}} \in R} \right\}$$ is equal to

A
$$R - \{ 0\} $$
B
$$R - \{ 0,1,3\} $$
C
$$R - \{ 0, - 1, - 3\} $$
D
$$R - \left\{ {0, - 1, - 3,{1 \over 2}} \right\}$$
3
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

The solution set of $${{|x - 2|\, - 1} \over {|x - 2|\, - 2}} \le 0$$ is

A
[0, 1] $$\cup$$ (3, 4)
B
[0, 1] $$\cup$$ [3, 4]
C
[$$-$$1, 1] $$\cup$$ (3, 4]
D
None of these
4
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

Let $$f(x) = {x \over {\sqrt {1 + {x^2}} }}$$, $$\underbrace {fofofo.....of(x)}_{x\,times}$$ is

A
$${x \over {\sqrt {1 + \left( {\sum\limits_{r = 1}^n r } \right){x^2}} }}$$
B
$${x \over {\sqrt {1 + \left( {\sum\limits_{r = 1}^n 1 } \right){x^2}} }}$$
C
$${\left( {{x \over {\sqrt {1 + {x^2}} }}} \right)^x}$$
D
$${x \over {\sqrt {1 + n{x^2}} }}$$
BITSAT Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12