A random experiment has five outcomes $\mathrm{w}_1, \mathrm{w}_2, \mathrm{w}_3, \mathrm{w}_4$ and $\mathrm{w}_5$. The probabilities of the occurrence of the outcomes $w_1, w_2, w_3, w_4$ and $w_5$ are respectively $\frac{1}{6}, a, b$ and $\frac{1}{12}$ such that $12 a+12 b-1=0$. Then the probabilities of occurrence of the outcome $w_3$ is
A die has two face each with number ' 1 ', three faces each with number ' 2 ' and one face with number ' 3 '. If the die is rolled once, then $\mathrm{P}(1$ or 3$)$ is
Consider the following statements.
Statement (I): If E and F are two independent events, then $E^{\prime}$ and $F^{\prime}$ are also independent.
Statement (II): Two mutually exclusive events with non-zero probabilities of occurrence cannot be independent.
Which of the following is correct?
If A and B are two non-mutually exclusive events such that $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A})$, then