1
BITSAT 2024
MCQ (Single Correct Answer)
+3
-1
Number of real solution of $ \sqrt{5-\log _{2}|x|} $ $ =3-\log _{2}|x| $ is equal to
A
1
B
2
C
3
D
4
2
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

If $$\alpha<1$$ be a root of the equation $$2 x^2-5 x+2=0$$, then the other root of the equation is

A
$$4 \alpha^2+4 \alpha$$
B
$$4 \alpha^3+3 \alpha$$
C
$$4 \alpha^3-3 \alpha$$
D
$$4 \alpha^2-2 \alpha$$
3
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

Let $$\alpha, \beta$$ be the roots of the equation $$x^2-p x+r=0$$ and $$\frac{\alpha}{2}, 2 \beta$$ be the roots of the equation $$x^2-q x+r=0$$. Then, the value of $$r$$ is equal to

A
$$\frac{2}{9}(p-q)(2 q-p)$$
B
$$\frac{2}{9}(q-2 p)(2 q-p)$$
C
$$\frac{2}{9}(q-p)(2 p-q)$$
D
$$\frac{2}{9}(2 p-q)(2 q-p)$$
4
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

If $$\alpha$$ be a root of the equation $$4{x^2} + 2x - 1 = 0$$, then the other root of the equation is

A
4$$\alpha$$2 + 2$$\alpha$$
B
4$$\alpha$$2 $$-$$ 2$$\alpha$$
C
4$$\alpha$$3 $$-$$ 3$$\alpha$$
D
4$$\alpha$$3 + 3$$\alpha$$
BITSAT Subjects
EXAM MAP