1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\alpha, \beta$ are the real roots of the equation $x^{2}+a x+b=0$. If $\alpha+\beta=\frac{1}{2}$ and $\alpha^{3}+\beta^{3}=\frac{37}{8}$, then $a-\frac{1}{b}=$
A
$\frac{-1}{6}$
B
$\frac{3}{2}$
C
$\frac{-3}{2}$
D
$\frac{1}{6}$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The solution set of the inequation $\sqrt{x^{2}+x-2} > (1-x)$ is
A
$(-\infty, 2)$
B
$(-\infty,-2)$
C
$(1, \infty)$
D
$(0, \infty)$
3
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha, \beta, \gamma$ are the roots of the equation $4 x^{3}-3 x^{2}+2 x-1=0$, then $\alpha^{3}+\beta^{3}+\gamma^{3}=$
A
$\frac{2}{27}$
B
$\frac{1}{8}$
C
$\frac{3}{64}$
D
$\frac{27}{128}$
4
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The equation $16 x^{4}+16 x^{3}-4 x-1=0$ has a multiple root. If $\alpha, \beta, \gamma, \delta$ are the roots of this equation, then $\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}+\frac{1}{\delta^{4}}=$
A
$\frac{1}{64}$
B
$\frac{1}{32}$
C
32
D
64
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12