1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $z=\frac{(2-i)(1+i)^{3}}{(1-i)^{2}}$, then $\arg (z)=$
A
$\tan ^{-1}\left(\frac{1}{3}\right)-\pi$
B
$\tan ^{-1}\left(\frac{3}{4}\right)-\pi$
C
$\pi-\tan ^{-1}\left(\frac{3}{4}\right)$
D
$\tan ^{-1}\left(\frac{1}{3}\right)$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$z=x+i y$ and the point $P$ represents $z$ in the argand plane. If the amplitude of $\left(\frac{2 z-i}{z+2 i}\right)$ is $\frac{\pi}{4}$, then the equation of the locus of $P$ is
A
$2 x^{2}+2 y^{2}-3 x+3 y-2=0,(x, y) \neq(0,-2)$
B
$\left.2 x^{2}+2 y^{2}+5 x+3 y-2=0,(x, y) \neq 0,-2\right)$
C
$\left.2 x^{2}+2 y^{2}+3 x+3 y-2=0,(x, y) \neq 0,2\right)$
D
$2 x^{2}+2 y^{2}-5 x+3 y-2=0,(x, y) \neq(0,2)$
3
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\alpha, \beta$ are the roots of the equation $x^{2}+2 x+4=0$. If the point representing $\alpha$ in the argand diagram lies in the 2nd quadrant and $\alpha^{2024}-\beta^{2024}=i k,(i=\sqrt{-1})$, then $k=$
A
$-2^{2025} \sqrt{3}$
B
$2^{2025} \sqrt{3}$
C
$-2^{2024} \sqrt{3}$
D
$2^{2004} \sqrt{3}$
4
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha$ is a root of the equation $x^{2}-x+1=0$, then $\left(\alpha+\frac{1}{\alpha}\right)^{3}+\left(\alpha^{2}+\frac{1}{\alpha^{2}}\right)^{3}+\left(\alpha^{3}+\frac{1}{\alpha^{3}}\right)^{3}+\left(\alpha^{4}+\frac{1}{\alpha^{4}}\right)^{3}=$
A
0
B
1
C
-3
D
-9
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12