Chemistry
Consider the following pairs.
$$ \begin{array}{l|l|l} \hline & \text { Order } & \text { Property } \\ \hline \text { (A) } & \mathrm{NO}_2>\mathrm{O}_3>\mathrm{H}_2 \mathrm{O} & \text { Bond angle } \\ \hline \text { (B) } & \mathrm{HF}>\mathrm{H}_2 \mathrm{O}>\mathrm{NH}_3 & \text { Dipole moment } \\ \hline \text { (C) } & \mathrm{I}_2>\mathrm{F}_2>\mathrm{N}_2 & \text { Bond length } \\ \hline \end{array} $$
Which of the above pairs are correctly matched?
Observe the following reactions.
$$ \begin{aligned} & \text { I. } \mathrm{H}_2 \mathrm{O}(l)+2 \mathrm{Na}(s) \longrightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_2(g) \\\\ & \text { II. } 2 \mathrm{H}_2 \mathrm{O}(l)+2 \mathrm{~F}_2(g) \longrightarrow 4 \mathrm{H}^{+}(a q)+4 \mathrm{~F}^{-}(a q)+\mathrm{O}_2(g) \end{aligned} $$
Assertion (A) $\mathrm{MgO}, \mathrm{CaO}, \mathrm{SrO}$ and BaO are insoluble in water.
Reason ( R ) In aqueous medium the basic strength of $\mathrm{MgO}, \mathrm{CaO}, \mathrm{SrO}$ and BaO increases with increase in the atomic number of metal.
The correct option among the following is
The electron displacement effect observed in the given structures is known as
$$ \begin{aligned} & -\mathrm{OCH}_2 \mathrm{CH}_3,-\mathrm{COCH}_3,-\mathrm{NHCOCH}_3, \\ & -\mathrm{COOCH}_3, \mathrm{SO}_3 \mathrm{H} \end{aligned} $$
$X$ and $Z$ respectively in the following reaction sequence are $\mathrm{C}_3 \mathrm{H}_6 \xrightarrow{X} Y \xrightarrow[\mathrm{AlCl}_3]{\mathrm{C}_6 \mathrm{H}_6} Z$ (Major projuct)
Identify the correct statements from the following
(A) At 298 K , the potential of hydrogen electrotle placed in a solution of $\mathrm{pH}=10$, is -0.59 V
(B) The limiting molar conductivity of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$is 119 and $76 \mathrm{~S} \mathrm{~cm}^2 \mathrm{~mol}^{-1}$ respectively. The limiting molar conductivity of $\mathrm{CaCl}_2$ is $195 \mathrm{Scm}^2 \mathrm{~mol}^{-1}$
(C) The correct relationship between $K_C$ and $E_{\text {cell }}^{\ominus}$ is $$ E_{\text {cell }}^\theta=\frac{2303 R T}{n F} \log K_C $$
Which of the following when subjected to thermal decomposition will liberate dinitrogen ?
(i) Sodium nitrate
(ii) Ammonium dichromate
(iii) Barium azide
"Observe the following reaction. This reaction represents
$$ 4 \mathrm{HCl}+\mathrm{O}_2 \xrightarrow[723 \mathrm{~K}]{\mathrm{CuCl}_2} 2 \mathrm{Cl}_2+2 \mathrm{H}_2 \mathrm{O} $$"
Identify the correct statements from the following.
(i) Ti (IV) is more stable than Ti (III) and Ti (II).
(ii) Among $3 d$-series elements (From $Z=22$ to 29). Only copper has positive reduction potential $\left(M^{2+} / M\right)$.
(iii) Both Sc and Zn exhibit +1 oxidation state.
Match the following.
List-I (Monomer/s) | List-II (Name of polymer) |
A. CF₂$=$CF₂ | I. Neoprene |
B. NH₂(CH₂)₆NH₂, HO₂C(CH₂)₄CO₂H | II. Bakelite |
C. C₆H₅OH₃ HCHO | III. Teflon |
D. CH₂$=$CH(Cl)—CH$=$CH₂ | IV. Nylon 6,6 |
The correct answer is
Assertion (A) : Chlorobenzene is not formed in the reaction of phenol with thionyl chloride.
Reason (R) : In phenol, carbon - oxygen bond has partial double bond character.
The correct answer is :
Mathematics
The system of simultaneous linear equations
$$ \begin{aligned} & x-2 y+3 z=4,3 x+y-2 z=7 \\ & 2 x+3 y+z=6 \text { has } \end{aligned} $$
If $\sqrt{5}-i \sqrt{15} \doteqdot r(\cos \theta+i \sin \theta),-\pi<\theta<\pi$, then $r^2\left(\sec \theta+3 \operatorname{cosec}^2 \theta\right)=$
The point $P$ denotes the complex number $z=x+i y$ in the argand plane. If $\frac{2 z-i}{z-2}$ is a purely real number, then the equation of the locus of $P$ is
$x$ and $y$ are two complex numbers such that $|x|=|y|=1$.
If $\arg (x)=2 \alpha, \arg (y)=3 \beta$ and $\alpha+\beta=\frac{\pi}{36}$, then $x^6 y^4+\frac{1}{x^6 y^4}=$
If the quadratic equation $3 x^2+(2 k+1) x-5 k=0$ has real and equal roots, then the value of $k$ such that
$\frac{1}{2}$ < $k$ < 0 is
Consider the parabola $25\left[(x-2)^2+(y+5)^2\right]=(3 x+4 y-1)^2$, match the characteristic of this parabola given in List I with its corresponding item in List II.
$$ \begin{array}{lll} \hline & \text { List I } & \text { List II } \\\\ \hline \text { I } & \text { Vertex } & \text { (A) } 8 \\\\ \hline \text { II } & \text { length of latus rectum } & \text { (B) }\left(\frac{29}{10}, \frac{-38}{10}\right) \\\\ \hline \text { III } & \text { Directrix } & \text { (C) } 3 x+4 y-1=0 \\\\ \hline \text { IV } & \begin{array}{l} \text { One end of the latus } \\\\ \text { rectum } \end{array} & \text { (D) }\left(\frac{-2}{5}, \frac{-16}{5}\right) \\\\ \hline \end{array} $$
The correct answer is
$\lim _{x \rightarrow 0} \frac{3^{\sin x}-2^{\tan x}}{\sin x}=$
If the function
$$ f(x)=\left\{\begin{array}{cc} \frac{\cos a x-\cos 9 x}{x^2} & \text {, if } x \neq 0 \\ 16 & \text {, if } x=0 \end{array}\right. $$
is continuous at $x=0$, then $a=$
If $ f(x)=\left\{\begin{array}{ll}\frac{8}{x^{3}}-6 x & \text {, if } 0 < x \leq 1 \\\\ \frac{x-1}{\sqrt{x}-1} & \text {,if } x > 1\end{array}\right. $ is a real valued function, then at $ x=1, f $ is
If $x=\frac{9 t^2}{1+t^4}$ and $y=\frac{16 t^2}{1-t^4}$ then $\frac{d y}{d x}=$
$\int(\sqrt{1-\sin x}+\sqrt{1+\sin x}) d x=f(x)+c$, where $c$ is the constant of integration. If $\frac{5 \pi}{2}$<$x<\frac{7 \pi}{2}$ and $$ f\left(\frac{8 \pi}{3}\right)=-2, \text { then } f^{\prime}\left(\frac{8 \pi}{3}\right)= $$
Physics
Three resistors of resistances $10 \Omega, 20 \Omega$ and $30 \Omega$ are connected as shown in the figure. If the points $A, B$ and $C$ are at potentials $10 \mathrm{~V}, 6 \mathrm{~V}$ and 5 V respectively, then the ratio of the magnitudes of the currents through $10 \Omega$ and $30 \Omega$ resistors is
Three logic gates are connected as shown in the figure. If the inputs are $A=1$ and $B=1$, then the values of $Y_1$ and $Y_2$ respectively are
