1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $y=\tan ^{-1}\left[\frac{\sin ^{3}(2 x)-3 x^{2} \sin (2 x)}{3 x \sin ^{2}(2 x)-x^{3}}\right]$, then $\frac{d y}{d x}=$
A
$\frac{6 x \cos (2 x)-3 \sin (2 x)}{x^{2}-\sin ^{2}(2 x)}$
B
$\frac{6 x \sin (2 x)-3 \cos (2 x)}{x^{2}+\sin ^{2}(2 x)}$
C
$\frac{2 x \cos (2 x)-\sin (2 x)}{x^{2}+\sin ^{2}(2 x)}$
D
$\frac{6 x \cos (2 x)-3 \sin (2 x)}{x^{2}+\sin ^{2}(2 x)}$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Derivative of $(\sin x)^{x}$ with respect to $x^{(\sin x)}$ is
A
$\frac{(\sin x)^{x-1}[(\sin x) \log (\sin x)+x \cos x]}{x^{(\sin x-1)}[x \cos x(\log x)+\sin x]}$
B
$\frac{(\sin x)^{x}[(\sin x)(\log (\sin x)+x \cos x)]}{x^{(\sin x)}[x \cos x(\log x)+\sin x]}$
C
$\frac{x^{\sin x-1}[x \cos x(\log x)+\sin x]}{(\sin x)^{x-1}[(\sin x) \log (\sin x)+x \cos x]}$
D
$\frac{x^{\sin x}[x \cos x(\log x)+\sin x]}{(\sin x)^{x}[(\sin x) \log (\sin x)+x \cos x]}$
3
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
For a given function $y=f(x), \delta y$ denote the actual error in $y$ corresponding to actual error $\delta x$ in $x$ and $d y$ denotes the approximately value of $\delta y$. If $y=f(x)=2 x^{2}-3 x+4$ and $\delta x=0.02$, then the value of $\delta y-d y$ when $x=5$ is
A
0.0008
B
0.008
C
0.0004
D
0.004
4
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The length of the normal drawn at $t=\frac{\pi}{4}$ on the curve $x=2(\cos 2 t+t \sin 2 t), y=4(\sin 2 t+t \cos 2 t)$ is
A
$\frac{4}{\pi} \sqrt{1+\pi^{2}}$
B
$4 \sqrt{1+\pi^{2}}$
C
$4 \pi$
D
$\frac{4}{\pi}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12