1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
A function $f: R \rightarrow R$ is such that $y f(x+y)+\cos m x y=1+y f(x)$. If $m=2$, then $f^{\prime}(x)=$
A
$-2 \sin 2 x y$
B
$4 x$
C
$\frac{2 \sin 2 x y}{y}$
D
$2 x^{2}$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $y=\sqrt{\sin (\log 2 x)+\sqrt{\sin (\log 2 x)+\sqrt{\sin (\log 2 x)+\ldots \infty,}}}$ then $\frac{d y}{d x}=$
A
$\frac{\cos (\log 2 x)}{2 x(2 y-1)}$
B
$\frac{\cos (\log 2 x)}{(2 y-1)}$
C
$\frac{\cos (\log 2 x)}{x(2 y-1)}$
D
$\frac{\sin (\log 2 x)}{x(2 y-1)}$
3
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $y=\tan ^{-1}\left[\frac{\sin ^{3}(2 x)-3 x^{2} \sin (2 x)}{3 x \sin ^{2}(2 x)-x^{3}}\right]$, then $\frac{d y}{d x}=$
A
$\frac{6 x \cos (2 x)-3 \sin (2 x)}{x^{2}-\sin ^{2}(2 x)}$
B
$\frac{6 x \sin (2 x)-3 \cos (2 x)}{x^{2}+\sin ^{2}(2 x)}$
C
$\frac{2 x \cos (2 x)-\sin (2 x)}{x^{2}+\sin ^{2}(2 x)}$
D
$\frac{6 x \cos (2 x)-3 \sin (2 x)}{x^{2}+\sin ^{2}(2 x)}$
4
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Derivative of $(\sin x)^{x}$ with respect to $x^{(\sin x)}$ is
A
$\frac{(\sin x)^{x-1}[(\sin x) \log (\sin x)+x \cos x]}{x^{(\sin x-1)}[x \cos x(\log x)+\sin x]}$
B
$\frac{(\sin x)^{x}[(\sin x)(\log (\sin x)+x \cos x)]}{x^{(\sin x)}[x \cos x(\log x)+\sin x]}$
C
$\frac{x^{\sin x-1}[x \cos x(\log x)+\sin x]}{(\sin x)^{x-1}[(\sin x) \log (\sin x)+x \cos x]}$
D
$\frac{x^{\sin x}[x \cos x(\log x)+\sin x]}{(\sin x)^{x}[(\sin x) \log (\sin x)+x \cos x]}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12