1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $y=\sqrt{\sin (\log 2 x)+\sqrt{\sin (\log 2 x)+\sqrt{\sin (\log 2 x)+\ldots \infty,}}}$ then $\frac{d y}{d x}=$
A
$\frac{\cos (\log 2 x)}{2 x(2 y-1)}$
B
$\frac{\cos (\log 2 x)}{(2 y-1)}$
C
$\frac{\cos (\log 2 x)}{x(2 y-1)}$
D
$\frac{\sin (\log 2 x)}{x(2 y-1)}$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $y=\tan ^{-1}\left[\frac{\sin ^{3}(2 x)-3 x^{2} \sin (2 x)}{3 x \sin ^{2}(2 x)-x^{3}}\right]$, then $\frac{d y}{d x}=$
A
$\frac{6 x \cos (2 x)-3 \sin (2 x)}{x^{2}-\sin ^{2}(2 x)}$
B
$\frac{6 x \sin (2 x)-3 \cos (2 x)}{x^{2}+\sin ^{2}(2 x)}$
C
$\frac{2 x \cos (2 x)-\sin (2 x)}{x^{2}+\sin ^{2}(2 x)}$
D
$\frac{6 x \cos (2 x)-3 \sin (2 x)}{x^{2}+\sin ^{2}(2 x)}$
3
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Derivative of $(\sin x)^{x}$ with respect to $x^{(\sin x)}$ is
A
$\frac{(\sin x)^{x-1}[(\sin x) \log (\sin x)+x \cos x]}{x^{(\sin x-1)}[x \cos x(\log x)+\sin x]}$
B
$\frac{(\sin x)^{x}[(\sin x)(\log (\sin x)+x \cos x)]}{x^{(\sin x)}[x \cos x(\log x)+\sin x]}$
C
$\frac{x^{\sin x-1}[x \cos x(\log x)+\sin x]}{(\sin x)^{x-1}[(\sin x) \log (\sin x)+x \cos x]}$
D
$\frac{x^{\sin x}[x \cos x(\log x)+\sin x]}{(\sin x)^{x}[(\sin x) \log (\sin x)+x \cos x]}$
4
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
For a given function $y=f(x), \delta y$ denote the actual error in $y$ corresponding to actual error $\delta x$ in $x$ and $d y$ denotes the approximately value of $\delta y$. If $y=f(x)=2 x^{2}-3 x+4$ and $\delta x=0.02$, then the value of $\delta y-d y$ when $x=5$ is
A
0.0008
B
0.008
C
0.0004
D
0.004
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12