1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $m$ and $M$ are respectively the absolute minimum and absolute maximum values of a function $f(x)=2 x^{3}+9 x^{2}+12 x+1$ defined on $[-3,0]$, then $m+M=$
A
-7
B
0
C
1
D
5
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{\sec x}{3(\sec x+\tan x)+2} d x=$
A
$\frac{1}{2} \log \left|\frac{\tan \frac{x}{2}+1}{\tan \frac{x}{2}+5}\right|+C$
B
$\frac{2}{\sqrt{11}} \tan ^{-1}\left\{\frac{3 \tan \frac{x}{2}+4}{\sqrt{11}}\right\}+C$
C
$\log |3 \sec x+2 \tan x|+C$
D
$\log |3 \tan x+2 \sec x|+C$.
3
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{d x}{4+3 \cot x} d x=$
A
$-\frac{3}{25} \log |4+3 \cot x|+\frac{4}{25} x+c$
B
$-\frac{3}{25} \log |4 \sin x+3 \cos x|+\frac{4}{25} x+c$
C
$\frac{4}{25} \log |4 \sin x+3 \cos x|-\frac{3}{25} x+c$
D
$\frac{4}{25} \log |4+3 \cot x|-\frac{3}{25} x+c$
4
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\int \frac{d x}{(x+1) \sqrt{x^{2}+4}}=$
A
$\frac{1}{2} \sqrt{\frac{x+1}{x+2}}+c$
B
$\log \left|\frac{x+2}{x+1}\right|+c$
C
$-\frac{1}{\sqrt{5}} \sinh ^{-1}\left(\frac{4-x}{2(x+1)}\right)+c$
D
$-\frac{1}{\sqrt{5}} \cosh ^{-1}\left(\frac{4+x}{2(x-1)}\right)+c$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12