1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation, $x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^2+2 y^2$ when $y(1)=0$ is

A
$\frac{x^2+y^2}{x^3}=1$
B
$x^2+y^2=x$
C
$x^2+y^2=x^4$
D
$x^2+2 y^2=x^4$
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the tangent to the circle, given by $x=5 \cos \theta, y=5 \sin \theta$ at the point $\theta=\frac{\pi}{3}$ on it , is

A
$x-\sqrt{3} y=-5$
B
$x+\sqrt{3} y=10$
C
$\sqrt{3} x+y=5 \sqrt{3}$
D
$\sqrt{3} x-y=0$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The joint equation of two lines through the origin, each making an angle with measure of $30^{\circ}$ with the positive Y -axis, is

A
$x^2-3 y^2=0$
B
$2 x^2-3 y^2=0$
C
$3 x^2-y^2=0$
D
$x^2+3 y^2=0$
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

With usual notations, if the lengths of the sides of a triangle are $7 \mathrm{~cm}, 4 \sqrt{3} \mathrm{~cm}$ and $\sqrt{13} \mathrm{~cm}$, then the measures of the smallest angle is

A
$\frac{\pi}{2}$
B
$\frac{\pi}{6}$
C
$\frac{\pi}{3}$
D
$\frac{\pi}{4}$
MHT CET Papers
EXAM MAP