1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{x \mathrm{~d} x}{(x-1)^2(x+2)}=$$

A
$\frac{2}{9} \log (x-1)+\frac{1}{3} \times \frac{1}{x-1}+\frac{2}{9} \log (x+2)+\mathrm{c}$, where c is a constant of integration
B
$\frac{2}{9} \log (x-1)-\frac{1}{3} \times \frac{1}{(x-1)}+\frac{2}{9} \log (x+2)+\mathrm{c}$, where c is a constant of integration
C
$\frac{2}{9} \log (x-1)+\frac{1}{3} \times \frac{1}{x-1}-\frac{2}{9} \log (x+2)+\mathrm{c}$, where c is a constant of integration
D
$\frac{2}{9} \log (x-1)-\frac{1}{3} \times \frac{1}{x-1}-\frac{2}{9} \log (x+2)+\mathrm{c}$, where c is a constant of integration
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $Z$ be a complex number such that $|Z|+Z=2+i$ (where $i=\sqrt{-1})$, then $|Z|$ is equal to

A
$\frac{4}{5}$
B
$\frac{\sqrt{41}}{4}$
C
$\frac{5}{3}$
D
$\frac{5}{4}$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

_________ numbers greater than a million can be formed with the digits 2, 3, 0, 3, 4, 2, 3.

A
60
B
420
C
360
D
120
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For the following shaded region, the linear constraints are

MHT CET 2024 11th May Morning Shift Mathematics - Linear Programming Question 7 English

A
$x-y \leq 0,-x+3 y \leq 3, x \geq 0, y \geq 0$
B
$x-y \geq 0,-x+3 y \geq 3, x \geq 0, y \geq 0$
C
$x-y \geq 0,-x+3 y \leq 3, x \geq 0, y \geq 0$
D
$x-y \leq 0,-x+3 y=3, x \geq 0, y \geq 0$
MHT CET Papers
EXAM MAP