1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\cos ^3 x}{\sin ^2 x+\sin x} \mathrm{~d} x$ is

A
$\log (\sin x)-\sin x+\mathrm{c}$, where c is a constant of integration.
B
$\log (\sin x)-\cos x+\mathrm{c}$, where c is a constant of integration.
C
$\log (\sin x)+\sin x+\mathrm{c}$, where c is a constant of integration.
D
$\log (\cos x)-\cos x+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{P} \equiv(-5,0), \mathrm{Q} \equiv(0,0)$ and $\mathrm{R} \equiv(2,2 \sqrt{3})$ be three points. Then the equation of the bisector of the angle $P Q R$ is

A
$x-\frac{\sqrt{3}}{2} y=0$
B
$\frac{\sqrt{3}}{2} x-y=0$
C
$x+\sqrt{3} y=0$
D
$\sqrt{3} x+y=0$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\cos \left[\sin ^{-1}\left(\frac{3}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)\right]=$$

A
$\frac{36}{65}$
B
$\frac{12}{65}$
C
 $\frac{33}{65}$
D
$\frac{3}{65}$
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x \in[-1,1]$, then the value of $\int \mathrm{e}^{\sin ^{-1} x}\left(\frac{x+\sqrt{1-x^2}}{\sqrt{1-x^2}}\right) \mathrm{d} x$ is

A
$e^{\sin ^{-1} x}+c$, where $c$ is constant of integration.
B
$\mathrm{e}^{\sin ^{-1} x} \cdot \sin x+\mathrm{c}$, where c is constant of integration.
C
$\mathrm{e}^{\sin ^{-1} x} \cdot \cos x+\mathrm{c}$, where c is constant of integration.
D
$\mathrm{e}^{\sin ^{-1} x} \cdot x+\mathrm{c}$, where c is constant of integration.
MHT CET Papers
EXAM MAP