1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line passing through the point $(3,1,2)$ and perpendicular to the lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$ is

A
$\frac{x+3}{2}=\frac{y+1}{7}=\frac{z+2}{4}$
B
$\frac{x-3}{-2}=\frac{y-1}{7}=\frac{z-2}{4}$
C
$\frac{x-3}{2}=\frac{y-1}{-7}=\frac{z-2}{4}$
D
$\frac{x-3}{2}=\frac{y-1}{5}=\frac{z-2}{4}$
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$ such that $\mathrm{AX}=\mathrm{B}$, then $\mathrm{X}=$

A
$\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$
B
$\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$
C
$\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$
D
$\left[\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right]$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{x}=\frac{\bar{b} \times \bar{c}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \bar{y}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ and $\overline{\mathrm{z}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ where $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar vectors, then value of $\bar{x} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})+\bar{y} \cdot(\overline{\mathrm{~b}}+\overline{\mathrm{c}})+\overline{\mathrm{z}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})$ is

A
3
B
1
C
$-$1
D
0
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If in a triangle $A B C$, with usual notations, the angles are in A.P. and $b: c=\sqrt{3}: \sqrt{2}$, then angle $\mathrm{A}=$

A
$30^{\circ}$
B
$60^{\circ}$
C
$75^{\circ}$
D
$45^{\circ}$
MHT CET Papers
EXAM MAP