1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The p.m.f. of a random variable X is given by

$$\begin{aligned} \mathrm{P}[\mathrm{X}=x] & =\frac{\binom{5}{x}}{2^5}, \text { if } x=0,1,2,3,4,5 \\ & =0, \text { otherwise } \end{aligned}$$

Then which of the following is not correct?

A
$\mathrm{P}[\mathrm{X}=0]=\mathrm{P}[\mathrm{X}=5]$
B
$\mathrm{P}[\mathrm{X} \leq 1]=\mathrm{P}[\mathrm{X} \geq 4]$
C
$\mathrm{P}[\mathrm{X} \leq 2]=\mathrm{P}[\mathrm{X} \geq 3]$
D
$\mathrm{P}[\mathrm{X} \leq 2]>P[\mathrm{X} \geq 3]$
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=(1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)$, then $f^{\prime}(1)=$

A
60
B
240
C
80
D
120
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int_\limits{0.2}^{3.5}[x] \mathrm{d} x=$$ (where $[x]=$ greatest integer not greater than $x$ )

A
4
B
4.2
C
4.5
D
4.4
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{p}, \mathrm{q}$ and r be the statements

$\mathrm{p}: \mathrm{X}$ is an equilateral triangle

$\mathrm{q}: \mathrm{X}$ is isosceles triangle

r: q $\vee \sim p$,

then the equivalent statement of $r$ is

A
If X is not an equilateral triangle, then X is not an isosceles triangle
B
X is neither isosceles nor equilateral triangle
C
X is isosceles but not an equilateral triangle
D
If X is not an isosceles triangle, then X is not an equilateral triangle.
MHT CET Papers
EXAM MAP