If the lines $\frac{x+1}{-10}=\frac{y+k}{-1}=\frac{z-4}{1} \quad$ and $\frac{x+10}{-1}=\frac{y+1}{-3}=\frac{z-1}{4}$ intersect each other, then the value of $k$ is
The approximate value of $(3.978)^{\frac{3}{2}}$ is
The value of $\tan ^{-1}\left\{\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}+\frac{1}{2} \cos ^{-1} x$ is
Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\overline{\mathrm{c}}| \overline{\mathrm{a}}$. If ' $\theta$ ' is the angle between the vectors $\bar{b}$ and $\bar{c}$, then value of $\sin \theta$ is