1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \cos ^3\left(\frac{\pi}{8}\right) \cos \left(\frac{3 \pi}{8}\right)+\sin ^3\left(\frac{\pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right)=$$

A
$\frac{1}{2 \sqrt{2}}$
B
$\frac{1}{\sqrt{2}}$
C
$\frac{1}{2}$
D
$\frac{\sqrt{3}}{2}$
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $5 \bar{a}+4 \bar{b}$ and $\bar{a}-2 \bar{b}$ are perpendicular to each other, then the between $\bar{a}$ and $\bar{b}$ is

A
$\frac{2 \pi}{3}$
B
$\cos ^{-1}\left(\frac{2}{3}\right)$
C
$\frac{\pi}{3}$
D
$\cos ^{-1}\left(\frac{1}{3}\right)$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\cos ^3 x}{\sin ^2 x+\sin x} \mathrm{~d} x$ is

A
$\log (\sin x)-\sin x+\mathrm{c}$, where c is a constant of integration.
B
$\log (\sin x)-\cos x+\mathrm{c}$, where c is a constant of integration.
C
$\log (\sin x)+\sin x+\mathrm{c}$, where c is a constant of integration.
D
$\log (\cos x)-\cos x+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{P} \equiv(-5,0), \mathrm{Q} \equiv(0,0)$ and $\mathrm{R} \equiv(2,2 \sqrt{3})$ be three points. Then the equation of the bisector of the angle $P Q R$ is

A
$x-\frac{\sqrt{3}}{2} y=0$
B
$\frac{\sqrt{3}}{2} x-y=0$
C
$x+\sqrt{3} y=0$
D
$\sqrt{3} x+y=0$
MHT CET Papers
EXAM MAP