1
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A vector parallel to the line of intersection of the planes $$\bar{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$$ and $$\bar{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2$$ is

A
$$-2 \hat{i}+7 \hat{j}+13 \hat{k}$$
B
$$2 \hat{i}-7 \hat{j}+13 \hat{k}$$
C
$$-\hat{i}+4 \hat{j}+7 \hat{k}$$
D
$$\hat{\mathrm{i}}-4 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$$
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The length of the perpendicular drawn from the point $$(1,2,3)$$ to the line $$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$$ is

A
4 units
B
5 units
C
6 units
D
7 units
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$I=\int \frac{d x}{\sin (x-a) \sin (x-b)}$$, then I is given by

A
$$\frac{1}{\sin (b-a)} \log |\sin (x-a) \sin (x-b)|+c$$, where $$c$$ is a constant of integration.
B
$$\log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+c$$, where $$c$$ is a constant of integration.
C
$$\frac{1}{\sin (b-a)} \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+c$$, where $$c$$ is a constant of integration.
D
$$\frac{1}{\sin (b-a)} \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+c$$, where $$c$$ is a constant of integration.
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{P}(x)$$ be a polynomial of degree 2, with $$\mathrm{P}(2)=-1, \mathrm{P}^{\prime}(2)=0, \mathrm{P}^{\prime \prime}(2)=2$$, then $$\mathrm{P}(1.001)$$ is

A
0.002
B
$$-$$0.002
C
0.004
D
$$-$$0.004
MHT CET Papers
EXAM MAP