1
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A vector parallel to the line of intersection of the planes $$\bar{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1$$ and $$\bar{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2$$ is

A
$$-2 \hat{i}+7 \hat{j}+13 \hat{k}$$
B
$$2 \hat{i}-7 \hat{j}+13 \hat{k}$$
C
$$-\hat{i}+4 \hat{j}+7 \hat{k}$$
D
$$\hat{\mathrm{i}}-4 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$$
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The length of the perpendicular drawn from the point $$(1,2,3)$$ to the line $$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$$ is

A
4 units
B
5 units
C
6 units
D
7 units
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$I=\int \frac{d x}{\sin (x-a) \sin (x-b)}$$, then I is given by

A
$$\frac{1}{\sin (b-a)} \log |\sin (x-a) \sin (x-b)|+c$$, where $$c$$ is a constant of integration.
B
$$\log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+c$$, where $$c$$ is a constant of integration.
C
$$\frac{1}{\sin (b-a)} \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+c$$, where $$c$$ is a constant of integration.
D
$$\frac{1}{\sin (b-a)} \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+c$$, where $$c$$ is a constant of integration.
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{P}(x)$$ be a polynomial of degree 2, with $$\mathrm{P}(2)=-1, \mathrm{P}^{\prime}(2)=0, \mathrm{P}^{\prime \prime}(2)=2$$, then $$\mathrm{P}(1.001)$$ is

A
0.002
B
$$-$$0.002
C
0.004
D
$$-$$0.004
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12