A long wire is bent into a circular coil of one turn and then into a circular coil of smaller radius having $$\mathrm{n}$$ turns. If the same current passes in both the cases, the ratio of magnetic fields produced at the centre for one turn to that of $$n$$ turns is
When moving coil galvanometer (MCG) is converted into a voltmeter, the series resistance is '$$n$$' times the resistance of galvanometer. How many times that of MCG the voltmeter is now capable of measuring voltage?
The self induction (L) produced by solenoid of length '$$l$$' having '$$\mathrm{N}$$' number of turns and cross sectional area '$$A$$' is given by the formula ($$\phi=$$ magnetic flux, $$\mu_0=$$ permeability of vacuum)
A wire $$P Q$$ has length $$4.8 \mathrm{~m}$$ and mass $$0.06 \mathrm{~kg}$$. Another wire QR has length $$2.56 \mathrm{~m}$$ and mass $$0.2 \mathrm{~kg}$$. Both wires have same radii and are joined as a single wire. This wire is under tension of $$80 \mathrm{~N}$$. A wave pulse of amplitude $$3.5 \mathrm{~cm}$$ is sent along the wire $$\mathrm{PQ}$$ from end $$\mathrm{P}$$. the time taken by the wave pulse to travel along the wire from point P to R is ?