1
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}$ defined on $$\left(-\frac{1}{3}, \frac{1}{3}\right)$$ by $$\mathrm{f}(x)=\left\{\begin{array}{cc} \frac{1}{x} \log \left(\frac{1+3 x}{1-2 x}\right) & , \quad x \neq 0 \\ \mathrm{k} & , \quad x=0 \end{array}\right.$$ is continuous at $$x=0$$, then $$\mathrm{k}$$ is

A
6
B
1
C
5
D
$$-$$5
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The mirror image of $$\mathrm{P}(2,4,-1)$$ in the plane $$x-y+2 z-2=0$$ is $$(\mathrm{a}, \mathrm{b}, \mathrm{c})$$, then the value of $$a+b+c$$ is

A
4
B
5
C
7
D
9
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the slope of the tangent of the curve at any point is equal to $$-y+\mathrm{e}^{-x}$$, then the equation of the curve passing through origin is

A
$$y+x \mathrm{e}^x=0$$
B
$$y \mathrm{e}^x+x=0$$
C
$$y \mathrm{e}^x-x=0$$
D
$$y-x \mathrm{e}^x=0$$
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{cc}1 & 1 \\ 4 & -1\end{array}\right]$$, then $$(A+B)^{-1}$$ is

A
$$\left[\begin{array}{cc}\frac{-1}{2} & 0 \\ \frac{-3}{2} & \frac{1}{2}\end{array}\right]$$
B
$$\left[\begin{array}{cc}\frac{1}{2} & 0 \\ \frac{3}{2} & \frac{-1}{2}\end{array}\right]$$
C
$$\left[\begin{array}{cc}\frac{1}{2} & 0 \\ \frac{-3}{2} & \frac{1}{2}\end{array}\right]$$
D
$$\left[\begin{array}{ll}\frac{1}{2} & 0 \\ \frac{3}{2} & \frac{1}{2}\end{array}\right]$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12