Let $$\bar{a}=\hat{i}+2 \hat{j}-\hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}-\hat{k}$$ be two vectors. If $$\bar{c}$$ is a vector such that $$\bar{b} \times \bar{c}=\bar{b} \times \bar{a}$$ and $$\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=0$$, then $$\overline{\mathrm{c}} \cdot \overline{\mathrm{b}}$$ is
Let $$P \equiv(-3,0), Q \equiv(0,0)$$ and $$R \equiv(3,3 \sqrt{3})$$ be three points. Then the equation of the bisector of the angle $$\mathrm{PQR}$$ is
If in a regular polygon, the number of diagonals are 54, then the number of sides of the polygon are
Let $$x_0$$ be the point of local minima of $$\mathrm{f}(x)=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$$ where $$\overline{\mathrm{a}}=x \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=-2 \hat{\mathrm{i}}+x \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overline{\mathrm{c}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$$, then value of $$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$$ at $$x=x_0$$ is