If the lines $$\frac{x-\mathrm{k}}{2}=\frac{y+1}{3}=\frac{\mathrm{z}-1}{4}$$ and $$\frac{x-3}{1}=\frac{y-\frac{9}{2}}{2}=\frac{\mathrm{z}}{1}$$ intersect, then the value of $$\mathrm{k}$$ is
If $$|\vec{a}|=\sqrt{3} ;|\vec{b}|=5 ; \bar{b} \cdot \bar{c}=10$$, angle between $$\overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ is $$\frac{\pi}{3}, \overline{\mathrm{a}}$$ is perpendicular to $$\overline{\mathrm{b}} \times \overline{\mathrm{c}}$$. Then the value of $$|\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})|$$ is
If $$\int \frac{x^2}{\sqrt{1-x}} \mathrm{~d} x=\mathrm{p} \sqrt{1-x}\left(3 x^2+4 x+8\right)+\mathrm{c}$$ where $$\mathrm{c}$$ is a constant of integration, then the value of $$p$$ is
The centroid of the triangle formed by the lines $$x+3 y=10$$ and $$6 x^2+x y-y^2=0$$ is