1
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$z \in C$$ with $$\operatorname{Im}(z)=10$$ and it satisfies $$\frac{2 z-n}{2 z+n}=2 i-1, i=\sqrt{-1}$$ for some natural number $$\mathrm{n}$$, then

A
$$\mathrm{n}=20$$ and $$\operatorname{Re}(\mathrm{z})=-10$$
B
$$\mathrm{n}=40$$ and $$\operatorname{Re}(\mathrm{z})=-10$$
C
$$\mathrm{n}=40$$ and $$\operatorname{Re}(\mathrm{z})=10$$
D
$$\mathrm{n}=20$$ and $$\operatorname{Re}(\mathrm{z})=10$$
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|,|\bar{c}-\bar{a}|=2 \sqrt{2}$$ and the angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{2 \pi}{3}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|=$$

A
$$\frac{\sqrt{3}}{2}$$
B
$$\frac{3 \sqrt{3}}{2}$$
C
$$3 \sqrt{3}$$
D
$$4 \sqrt{3}$$
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If both mean and variance of 50 observations $$x_1, x_2, \ldots, x_{50}$$ are equal to 16 and 256 respectively, then mean of $$\left(x_1-5\right)^2,\left(x_2-5\right)^2, \ldots \ldots,\left(x_{50}-5\right)^2$$ is

A
357
B
367
C
377
D
387
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the statement $$\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})$$ is false, then true statement/statement pattern is

A
$$\mathrm{p}$$
B
$$\mathrm{p} \rightarrow(\mathrm{p} \vee \sim \mathrm{q})$$
C
$$\mathrm{p} \wedge(\sim \mathrm{p} \wedge \mathrm{q})$$
D
$$(p \vee \sim q) \rightarrow p$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12