1
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$z \in C$$ with $$\operatorname{Im}(z)=10$$ and it satisfies $$\frac{2 z-n}{2 z+n}=2 i-1, i=\sqrt{-1}$$ for some natural number $$\mathrm{n}$$, then

A
$$\mathrm{n}=20$$ and $$\operatorname{Re}(\mathrm{z})=-10$$
B
$$\mathrm{n}=40$$ and $$\operatorname{Re}(\mathrm{z})=-10$$
C
$$\mathrm{n}=40$$ and $$\operatorname{Re}(\mathrm{z})=10$$
D
$$\mathrm{n}=20$$ and $$\operatorname{Re}(\mathrm{z})=10$$
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|,|\bar{c}-\bar{a}|=2 \sqrt{2}$$ and the angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{2 \pi}{3}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|=$$

A
$$\frac{\sqrt{3}}{2}$$
B
$$\frac{3 \sqrt{3}}{2}$$
C
$$3 \sqrt{3}$$
D
$$4 \sqrt{3}$$
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If both mean and variance of 50 observations $$x_1, x_2, \ldots, x_{50}$$ are equal to 16 and 256 respectively, then mean of $$\left(x_1-5\right)^2,\left(x_2-5\right)^2, \ldots \ldots,\left(x_{50}-5\right)^2$$ is

A
357
B
367
C
377
D
387
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the statement $$\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})$$ is false, then true statement/statement pattern is

A
$$\mathrm{p}$$
B
$$\mathrm{p} \rightarrow(\mathrm{p} \vee \sim \mathrm{q})$$
C
$$\mathrm{p} \wedge(\sim \mathrm{p} \wedge \mathrm{q})$$
D
$$(p \vee \sim q) \rightarrow p$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12