1
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$x_0$$ be the point of local minima of $$\mathrm{f}(x)=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$$ where $$\overline{\mathrm{a}}=x \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=-2 \hat{\mathrm{i}}+x \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overline{\mathrm{c}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$$, then value of $$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$$ at $$x=x_0$$ is

A
15
B
$$-$$15
C
12
D
$$-$$12
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If a body cools from $$80^{\circ} \mathrm{C}$$ to $$50^{\circ} \mathrm{C}$$ in the room temperature of $$25^{\circ} \mathrm{C}$$ in 30 minutes, then the temperature of the body after 1 hour is

A
$$31.36^{\circ} \mathrm{C}$$
B
$$32.25^{\circ} \mathrm{C}$$
C
$$36.36^{\circ} \mathrm{C}$$
D
$$33.25^{\circ} \mathrm{C}$$
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$f(a)=2, f^{\prime}(a)=1, g(a)=-1, g^{\prime}(a)=2$$, then as $$x$$ approaches a, $$\frac{\mathrm{g}(x) \mathrm{f}(\mathrm{a})-\mathrm{g}(\mathrm{a}) \mathrm{f}(x)}{(x-\mathrm{a})}$$ approaches

A
3
B
5
C
0
D
2
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation representing the family of curves $$y^2=2 \mathrm{c}(x+\sqrt{\mathrm{c}})$$, where $$\mathrm{c}$$ is a positive parameter, is of

A
order 1, degree 4
B
order 2, degree 3
C
order 2, degree 4
D
order 1, degree 3
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12