Let $$x_0$$ be the point of local minima of $$\mathrm{f}(x)=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$$ where $$\overline{\mathrm{a}}=x \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=-2 \hat{\mathrm{i}}+x \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overline{\mathrm{c}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+x \hat{\mathrm{k}}$$, then value of $$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$$ at $$x=x_0$$ is
If a body cools from $$80^{\circ} \mathrm{C}$$ to $$50^{\circ} \mathrm{C}$$ in the room temperature of $$25^{\circ} \mathrm{C}$$ in 30 minutes, then the temperature of the body after 1 hour is
If $$f(a)=2, f^{\prime}(a)=1, g(a)=-1, g^{\prime}(a)=2$$, then as $$x$$ approaches a, $$\frac{\mathrm{g}(x) \mathrm{f}(\mathrm{a})-\mathrm{g}(\mathrm{a}) \mathrm{f}(x)}{(x-\mathrm{a})}$$ approaches
The differential equation representing the family of curves $$y^2=2 \mathrm{c}(x+\sqrt{\mathrm{c}})$$, where $$\mathrm{c}$$ is a positive parameter, is of