Let $$\overline{\mathrm{u}}, \overline{\mathrm{v}}$$ and $$\overline{\mathrm{w}}$$ be the vectors such that $$|\overline{\mathrm{u}}|=1; |\bar{v}|=2 ;|\bar{w}|=3$$. If the projection of $$\bar{v}$$ along $$\bar{u}$$ is equal to that of $$\overline{\mathrm{w}}$$ along $$\overline{\mathrm{u}}$$ and $$\overline{\mathrm{v}}, \overline{\mathrm{w}}$$ are perpendicular to each other, then $$|\bar{u}-\bar{v}+\bar{w}|$$ is equal to
If $$y=4 x-5$$ is a tangent to the curve $$y^2=\mathrm{p} x^3+\mathrm{q}$$ at $$(2,3)$$, then $$\mathrm{p}-\mathrm{q}$$ is
If $$x=\sqrt{\mathrm{e}^{\sin ^{-1} t}}$$ and $$y=\sqrt{\mathrm{e}^{\cos ^{-1} t}}$$, then $$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$$ is
If $$\sum_\limits{r=1}^{50} \tan ^{-1} \frac{1}{2 r^2}=p$$ then $$\tan p$$ is