1
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The diagonal of a square is changing at the rate of $$0.5 \mathrm{~cm} / \mathrm{sec}$$. Then the rate of change of area when the area is $$400 \mathrm{~cm}^2$$ is equal to

A
$$20 \sqrt{2} \mathrm{~cm}^2 / \mathrm{sec}$$
B
$$10 \sqrt{2} \mathrm{~cm}^2 / \mathrm{sec}$$
C
$$\frac{1}{10 \sqrt{2}} \mathrm{~cm}^2 / \mathrm{sec}$$
D
$$\frac{10}{\sqrt{2}} \mathrm{~cm}^2 / \mathrm{sec}$$
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=\hat{i}+2 \hat{j}-\hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}-\hat{k}$$ be two vectors. If $$\bar{c}$$ is a vector such that $$\bar{b} \times \bar{c}=\bar{b} \times \bar{a}$$ and $$\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=0$$, then $$\overline{\mathrm{c}} \cdot \overline{\mathrm{b}}$$ is

A
$$\frac{1}{2}$$
B
$$\frac{3}{2}$$
C
$$\frac{-3}{2}$$
D
$$\frac{-1}{2}$$
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$P \equiv(-3,0), Q \equiv(0,0)$$ and $$R \equiv(3,3 \sqrt{3})$$ be three points. Then the equation of the bisector of the angle $$\mathrm{PQR}$$ is

A
$$\frac{\sqrt{3}}{2} x+y=0$$
B
$$x+\sqrt{3} y=0$$
C
$$\sqrt{3} x+y=0$$
D
$$x+\frac{\sqrt{3}}{2} y=0$$
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If in a regular polygon, the number of diagonals are 54, then the number of sides of the polygon are

A
10
B
12
C
9
D
6
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12