1
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The diagonal of a square is changing at the rate of $$0.5 \mathrm{~cm} / \mathrm{sec}$$. Then the rate of change of area when the area is $$400 \mathrm{~cm}^2$$ is equal to

A
$$20 \sqrt{2} \mathrm{~cm}^2 / \mathrm{sec}$$
B
$$10 \sqrt{2} \mathrm{~cm}^2 / \mathrm{sec}$$
C
$$\frac{1}{10 \sqrt{2}} \mathrm{~cm}^2 / \mathrm{sec}$$
D
$$\frac{10}{\sqrt{2}} \mathrm{~cm}^2 / \mathrm{sec}$$
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=\hat{i}+2 \hat{j}-\hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}-\hat{k}$$ be two vectors. If $$\bar{c}$$ is a vector such that $$\bar{b} \times \bar{c}=\bar{b} \times \bar{a}$$ and $$\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=0$$, then $$\overline{\mathrm{c}} \cdot \overline{\mathrm{b}}$$ is

A
$$\frac{1}{2}$$
B
$$\frac{3}{2}$$
C
$$\frac{-3}{2}$$
D
$$\frac{-1}{2}$$
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$P \equiv(-3,0), Q \equiv(0,0)$$ and $$R \equiv(3,3 \sqrt{3})$$ be three points. Then the equation of the bisector of the angle $$\mathrm{PQR}$$ is

A
$$\frac{\sqrt{3}}{2} x+y=0$$
B
$$x+\sqrt{3} y=0$$
C
$$\sqrt{3} x+y=0$$
D
$$x+\frac{\sqrt{3}}{2} y=0$$
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If in a regular polygon, the number of diagonals are 54, then the number of sides of the polygon are

A
10
B
12
C
9
D
6
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12