The equation of the line passing through the point $$(-1,3,-2)$$ and perpendicular to each of the lines $$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$$ and $$\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$$ is
Let $$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$$ be a function such that $$\mathrm{f}(x)=x^3+x^2 \mathrm{f}^{\prime}(1)+x \mathrm{f}^{\prime \prime}(2)+6, x \in \mathrm{R}$$, then $$\mathrm{f}(2)$$ is
If $$A(1,4,2)$$ and $$C(5,-7,1)$$ are two vertices of triangle $$A B C$$ and $$G\left(\frac{4}{3}, 0, \frac{-2}{3}\right)$$ is centroid of the triangle $$A B C$$, then the mid point of side $$B C$$ is
The base of an equilateral triangle is represented by the equation $$2 x-y-1=0$$ and its vertex is $$(1,2)$$, then the length (in units) of the side of the triangle is