A line $$\mathrm{L}_1$$ passes through the point, whose p. v. (position vector) $$3 \hat{i}$$, is parallel to the vector $$-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$$. Another line $$\mathrm{L}_2$$ passes through the point having p.v. $$\hat{i}+\hat{j}$$ is parallel to vector $$\hat{i}+\hat{k}$$, then the point of intersection of lines $$L_1$$ and $$L_2$$ has p.v.
If $$y=\tan ^{-1}\left(\frac{4 \sin 2 x}{\cos 2 x-6 \sin ^2 x}\right)$$, then $$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)$$ at $$x=0$$ is
The expression $$(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$$ is equivalent to
The raw data $$x_1, x_2, \ldots \ldots, x_{\mathrm{n}}$$ is an A.P. with common difference $$\mathrm{d}$$ and first term $$0, \bar{x}$$ and $$\sigma^2$$ are mean and variance of $$x_{\mathrm{i}}, \mathrm{i}=1,2, \ldots \ldots \mathrm{n}$$, then $$\sigma^2$$ is