1
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{X}$$ be random variable having Binomial distribution $$B(7, p)$$. If $$P[X=3]=5 P[X=4]$$, then variance of $$\mathrm{X}$$ is

A
$$\frac{7}{6}$$
B
$$\frac{35}{36}$$
C
$$\frac{77}{36}$$
D
$$\frac{1}{36}$$
2
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The scalar product of vectors $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$$ and a unit vector along the sum of vectors $$\bar{b}=2 \hat{i}-4 \hat{j}+5 \hat{k}$$ and $$\bar{c}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}$$ is one, then the value of $$\lambda$$ is

A
1
B
$$-2$$
C
$$-3$$
D
2
3
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\log \left(x^2+a^2\right)}{x^2} d x=$$

A
$$\frac{-\log \left(x^2+\mathrm{a}^2\right)}{x}+\frac{1}{\mathrm{a}} \tan ^{-1} \frac{x}{\mathrm{a}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{-\log \left(x^2+\mathrm{a}^2\right)}{x}+\frac{2}{\mathrm{a}} \tan ^{-1} \frac{x}{\mathrm{a}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{\log \left(x^2+\mathrm{a}^2\right)}{x^2}-\frac{1}{\mathrm{a}} \tan ^{-1} \frac{x}{\mathrm{a}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\frac{\log \left(x^2+\mathrm{a}^2\right)}{x^2}-\frac{2}{\mathrm{a}} \tan ^{-1} \frac{x}{\mathrm{a}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
4
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The parametric equations of the curve $$x^2+y^2+a x+b y=0$$ are

A
$$x=\frac{\mathrm{a}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \cos \theta, y=\frac{\mathrm{b}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \sin \theta$$
B
$$x=\frac{\mathrm{a}}{2}-\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \cos \theta, y=\frac{\mathrm{b}}{2}-\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \sin \theta$$
C
$$x=-\frac{\mathrm{a}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \cos \theta, y=-\frac{\mathrm{b}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \sin \theta$$
D
$$x=-\frac{\mathrm{a}}{2}-\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \cos \theta, y=-\frac{\mathrm{b}}{2}-\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \sin \theta$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12