1
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If a continuous random variable $$\mathrm{X}$$ has probability density function $$\mathrm{f}(x)$$ given by

$$f(x)=\left\{\begin{array}{cl} a x & , \text { if } 0 \leq x<1 \\ a & , \text { if } 1 \leq x<2 \\ 3 a-a x & , \text { if } 2 \leq x \leq 3 \\ 0 & , \text { otherwise } \end{array}\right.$$,

then a has the value

A
$$\frac{1}{5}$$
B
$$\frac{1}{3}$$
C
$$\frac{1}{2}$$
D
1
2
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $$\begin{aligned} \cos \left(18^{\circ}-\mathrm{A}\right) \cdot \cos ( & \left.18^{\circ}+\mathrm{A}\right) \\ & -\cos \left(72^{\circ}-\mathrm{A}\right) \cos \left(72^{\circ}+\mathrm{A}\right) \text { is }\end{aligned}$$

A
$$\cos 72^{\circ}$$
B
$$\sin 54^{\circ}$$
C
$$\sin 18^{\circ}$$
D
$$\cos 54^{\circ}$$
3
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int x^5 e^{-4 x^3} \mathrm{~d} x=\frac{1}{48} \mathrm{e}^{-4 x^3} \mathrm{f}(x)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration, then $$\mathrm{f}(x)$$ is given by

A
$$4 x^3+1$$
B
$$-4 x^3-1$$
C
$$-2 x^3-1$$
D
$$-2 x^3+1$$
4
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the differential equation $$\mathrm{e}^{-x}(y+1) \mathrm{d} y+\left(\cos ^2 x-\sin 2 x\right) y \mathrm{~d} x=0$$ at $$x=0$$, $$y=1$$ is

A
$$(y+1)+\mathrm{e}^x \cos ^2 x=2$$
B
$$y+\log y=\mathrm{e}^x \cos ^2 x$$
C
$$\log (y+1)+\mathrm{e}^x \cos ^2 x=1$$
D
$$y+\log y+\mathrm{e}^x \cos ^2 x=2$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12