The magnet is moved towards the coil with speed '$$\mathrm{V}$$'. The induced e.m.f. in the coil is '$$\mathrm{e}$$'. The magnet and the coil move away from one another each moving with speed '$$\mathrm{V}$$'. The induced e.m.f. in the coil is
A uniform wire $$20 \mathrm{~m}$$ long and weighing $$50 \mathrm{~N}$$ hangs vertically. The speed of the wave at mid point of the wire is (acceleration due to gravity $$=\mathrm{g}=10 \mathrm{~ms}^{-2}$$ )
A large number of bullets are fired in all directions with same speed '$$U$$'. The maximum area on the ground on which the bullets will spread is
A transformer has 20 turns in the primary and 100 turns in the secondary coil. An ac voltage of $$\mathrm{V}_{\text {in }}=600 \sin 314 \mathrm{t}$$ is applied to primary terminal of transformer. Then maximum value of secondary output voltage obtained in volt is