1
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(x)=x^3+\mathrm{b} x^2+\mathrm{c} x+\mathrm{d}$$ and $$0<\mathrm{b}^2<\mathrm{c}$$, then in $$(-\infty, \infty)$$

A
$$\mathrm{f}(x)$$ has a local maxima.
B
$$\mathrm{f}(x)$$ is strictly increasing function.
C
$$\mathrm{f}(x)$$ is bounded.
D
$$\mathrm{f}(x)$$ is strictly decreasing function.
2
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Differentiation of $$\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$ w.r.t. $$\cos ^{-1}\left(\sqrt{\frac{1+\sqrt{1+x^2}}{2 \sqrt{1+x^2}}}\right)$$ is

A
$$\frac{1}{2}$$
B
1
C
2
D
$$\frac{1}{4}$$
3
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function $$\mathrm{f}(\mathrm{t})=\frac{1}{\mathrm{t}^2+\mathrm{t}-2}$$ where $$\mathrm{t}=\frac{1}{x-1}$$ is discontinuous at

A
$$-2,1$$
B
$$2, \frac{1}{2}$$
C
$$\frac{1}{2}, 1$$
D
$$2,1$$
4
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $$X$$ has the following probability distribution

$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\mathrm{4k-10k^2}$$ $$\mathrm{5k-1}$$ $$\mathrm{3k^3}$$

then P(X < 2) is

A
$$\frac{2}{9}$$
B
$$\frac{5}{9}$$
C
$$\frac{8}{9}$$
D
$$\frac{4}{9}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12