1
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(x)=x^3+\mathrm{b} x^2+\mathrm{c} x+\mathrm{d}$$ and $$0<\mathrm{b}^2<\mathrm{c}$$, then in $$(-\infty, \infty)$$

A
$$\mathrm{f}(x)$$ has a local maxima.
B
$$\mathrm{f}(x)$$ is strictly increasing function.
C
$$\mathrm{f}(x)$$ is bounded.
D
$$\mathrm{f}(x)$$ is strictly decreasing function.
2
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Differentiation of $$\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$ w.r.t. $$\cos ^{-1}\left(\sqrt{\frac{1+\sqrt{1+x^2}}{2 \sqrt{1+x^2}}}\right)$$ is

A
$$\frac{1}{2}$$
B
1
C
2
D
$$\frac{1}{4}$$
3
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function $$\mathrm{f}(\mathrm{t})=\frac{1}{\mathrm{t}^2+\mathrm{t}-2}$$ where $$\mathrm{t}=\frac{1}{x-1}$$ is discontinuous at

A
$$-2,1$$
B
$$2, \frac{1}{2}$$
C
$$\frac{1}{2}, 1$$
D
$$2,1$$
4
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $$X$$ has the following probability distribution

$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\mathrm{4k-10k^2}$$ $$\mathrm{5k-1}$$ $$\mathrm{3k^3}$$

then P(X < 2) is

A
$$\frac{2}{9}$$
B
$$\frac{5}{9}$$
C
$$\frac{8}{9}$$
D
$$\frac{4}{9}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12