1
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If the magnitude of intensity of electric field at a distance '$$r_1$$' on an axial line and at a distance '$$r_2$$' on an equatorial line due to a given short dipole are equal, then $$r_1: r_2$$, is

A
$$\sqrt[3]{2}: 1$$
B
$$\sqrt{2}: 1$$
C
$$1: 2$$
D
$$1: \sqrt[3]{2}$$
2
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In an a.c. circuit the instantaneous current and emf are represented as $$\mathrm{I}=\mathrm{I}_0, \sin [\omega \mathrm{t}-\pi / 6]$$ and $$\mathrm{E}=\mathrm{E}_0 \sin [\omega \mathrm{t}+\pi / 3]$$ respectively. The voltage leads the current by

A
$$\frac{\pi}{2}$$
B
$$\frac{\pi}{4}$$
C
$$\frac{\pi}{3}$$
D
$$\frac{\pi}{6}$$
3
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In a biprism experiment, monochromatic light of wavelength '$$\lambda$$' is used. The distance between two coherent sources '$$\mathrm{d}$$' is kept constant. If the distance between slit and eyepiece '$$\mathrm{D}$$' is varied as $$D_1, D_2, D_3 \& D_4$$ and corresponding measured fringe widths are $$Z_1, Z_2, Z_3$$ and $$Z_4$$ then

A
$$\mathrm{Z}_1 \mathrm{D}_1=\mathrm{Z}_2 \mathrm{D}_2=\mathrm{Z}_3 \mathrm{D}_3=\mathrm{Z}_4 \mathrm{D}_4$$
B
$$\frac{Z_1}{D_1}=\frac{Z_2}{D_2}=\frac{Z_3}{D_3}=\frac{Z_4}{D_4}$$
C
$$\mathrm{D}_1 \sqrt{\mathrm{Z}_1}=\mathrm{D}_2 \sqrt{\mathrm{Z}_2}=\mathrm{D}_3 \sqrt{\mathrm{Z}_3}=\mathrm{D}_4 \sqrt{\mathrm{Z}_4}$$
D
$$Z_1 \sqrt{D_1}=Z_2 \sqrt{D_2}=Z_3 \sqrt{D_3}=Z_4 \sqrt{D_4}$$
4
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Three charges each of value $$+q$$ are placed at the corners of an isosceles triangle $$\mathrm{ABC}$$ of sides $$\mathrm{AB}$$ and $$\mathrm{AC}$$ each equal to $$2 \mathrm{a}$$. The mid points of $$A B$$ and $$A C$$ are $$D$$ and $$E$$ respectively. The work done in taking a charge $$Q$$ from $$D$$ to $$E$$ is ( $$\varepsilon_0=$$ permittivity of free space)

A
Zero
B
$$\frac{3 q \mathrm{Q}}{4 \pi \varepsilon_0 \mathrm{a}}$$
C
$$\frac{\mathrm{qQ}}{8 \pi \varepsilon_0 \mathrm{a}}$$
D
$$\frac{3 \mathrm{qQ}}{8 \pi \varepsilon_0 \mathrm{a}}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12