If the angle between the lines given by $$x^2-3 x y+\lambda y^2+3 x-5 y+2=0 ; \lambda \geq 0$$ is $$\tan ^{-1}\left(\frac{1}{3}\right)$$, then the value of $$\lambda$$ is
A line drawn from the point $$\mathrm{A}(1,3,2)$$ parallel to the line $$\frac{x}{2}=\frac{y}{4}=\frac{z}{1}$$, intersects the plane $$3 x+y+2 z=5$$ in point $$\mathrm{B}$$, then co-ordinates of point $$\mathrm{B}$$ are
The value of $$\frac{\mathrm{i}^{248}+\mathrm{i}^{246}+\mathrm{i}^{244}+\mathrm{i}^{242}+\mathrm{i}^{240}}{\mathrm{i}^{249}+\mathrm{i}^{247}+\mathrm{i}^{245}+\mathrm{i}^{243}+\mathrm{i}^{241}}, (\mathrm{i}=\sqrt{-1})$$ is
If $$\mathrm{f}(x)=\int \frac{x^2 \mathrm{~d} x}{\left(1+x^2\right)\left(1+\sqrt{1+x^2}\right)}$$ and $$\mathrm{f}(0)=0$$, then $$\mathrm{f}(1)$$ is