1
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Identify the monomer used to prepare Teflon.

A
$$\mathrm{C}_2 \mathrm{H}_4$$
B
$$\mathrm{C}_2 \mathrm{H}_3 \mathrm{N}$$
C
$$\mathrm{CONH}_2$$ and $$\mathrm{CH}_2 \mathrm{O}$$
D
$$\mathrm{C}_2 \mathrm{F}_4$$
2
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Calculate the number of atoms present in unit cell if an element having molar mass $$23 \mathrm{~g} \mathrm{~mol}^{-1}$$ and density $$0.96 \mathrm{~g} \mathrm{~cm}^{-3}$$.

$$[\mathrm{a}^3 \cdot \mathrm{N}_{\mathrm{A}}=48 \mathrm{~cm}^3 \mathrm{~mol}^{-1}]$$

A
1
B
2
C
4
D
6
3
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(x)=x^3+\mathrm{b} x^2+\mathrm{c} x+\mathrm{d}$$ and $$0<\mathrm{b}^2<\mathrm{c}$$, then in $$(-\infty, \infty)$$

A
$$\mathrm{f}(x)$$ has a local maxima.
B
$$\mathrm{f}(x)$$ is strictly increasing function.
C
$$\mathrm{f}(x)$$ is bounded.
D
$$\mathrm{f}(x)$$ is strictly decreasing function.
4
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Differentiation of $$\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$ w.r.t. $$\cos ^{-1}\left(\sqrt{\frac{1+\sqrt{1+x^2}}{2 \sqrt{1+x^2}}}\right)$$ is

A
$$\frac{1}{2}$$
B
1
C
2
D
$$\frac{1}{4}$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12