Array of light is incident at an angle of incidence '$$i$$' on one surface of a prism of small angle $$\mathrm{A}$$ and emerges normally from the other surface. If the refractive index of the material of the prism is '$$\mu$$', then the angle of incidence is equal to
An isotope of the original nucleus can be formed in a radioactive decay, with the emission of following particles.
If two identical spherical bodies of same material and dimensions are kept in contact, the gravitational force between them is proportional to $$\mathrm{R}^{\mathrm{X}}$$, where $$\mathrm{x}$$ is non zero integer [Given : $$\mathrm{R}$$ is radius of each spherical body]
$$\mathrm{A}$$ and $$\mathrm{B}$$ are two interfering sources where $$\mathrm{A}$$ is ahead in phase by $$54^{\circ}$$ relative to B. The observation is taken from point $$\mathrm{P}$$ such that PB $$-$$ PA = 2.5 $$\lambda$$. Then the phase difference between the waves from A and B reaching point P is (in rad)