1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\int\left(e^{x \log _e 6}\right) e^x d x=\phi(x)+c$ then $\phi(x)=$
A
$6^x e^x$
B
$\frac{e^x}{\log 6 e}$
C
$\frac{6^x}{1+\log _e 6}$
D
$\frac{(6 e)^x}{1+\log _e 6}$
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
The number of solutions of $\frac{d y}{d x}=\frac{y+1}{x-1}$, when $y(1)=2$ is :
A
two
B
one
C
zero
D
infinite
3
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
Evaluate: $\lim _\limits{x \rightarrow 0} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}$
A
1
B
0
C
$\frac{2}{3}$
D
$\frac{1}{3}$
4
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
A geometric progression consists of an even number of terms. If the sum of all the terms is five times the sum of the terms occupying the odd places, then the common ratio of the geometric progression is
A
$r=4$
B
$r=3$
C
$r=6$
D
$r=2$
EXAM MAP