1
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
A man is moving away from a tower 41.6 m high at a rate of $2 \mathrm{~m} / \mathrm{s}$. If the eyelevel of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower is :
A
$-\frac{4}{125} \mathrm{rad} / \mathrm{sec}$
B
$\frac{4}{625} \mathrm{rad} / \mathrm{sec}$
C
$-\frac{2}{125} \mathrm{rad} / \mathrm{sec}$
D
$\frac{1}{625} \mathrm{rad} / \mathrm{sec}$
2
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\sin ^{-1}(x-1)+\cos ^{-1}(x-3)+\tan ^{-1}\left(\frac{x}{2-x^2}\right)=\cos ^{-1} k+\pi$, then the value of ' $k$ ' is
A
$0$
B
$-\frac{1}{\sqrt{2}}$
C
$1$
D
$\frac{1}{\sqrt{2}}$
3
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
Given that $z$ is a real number and $z=\frac{\lambda+4 i}{1+\lambda i}$ where $\lambda \in R$, then the possible value of $\lambda$ is :
A
$-2$
B
$2 i$
C
$5$
D
$\pm 2 i$
4
COMEDK 2025 Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5$, then
A
$\operatorname{Re}(z)>0, \operatorname{Im}(z)<0$
B
$\operatorname{Im}(z)=0$
C
$\operatorname{Re}(z)=0$
D
$\operatorname{Re}(z)>0, \operatorname{Im}(z)>0$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12