1
GATE CSE 2022
MCQ (Single Correct Answer)
+1
-0.33

Which one of the following is the closed form for the generating function of the sequence (an}n $$\ge$$ 0 defined below?

$${a_n} = \left\{ {\matrix{ {n + 1,} & {n\,is\,odd} \cr {1,} & {otherwise} \cr } } \right.$$

A
$${{x(1 + {x^2})} \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
B
$${{x(3 - {x^2})} \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
C
$${{2x} \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
D
$${x \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
2
GATE CSE 2022
MCQ (Single Correct Answer)
+1
-0.33

Consider a simple undirected unweighted graph with at least three vertices. If A is the adjacency matrix of the graph, then the number of 3-cycles in the graph is given by the trace of

A
A3
B
A3 divided by 2
C
A3 divided by 3
D
A3 divided by 6
3
GATE CSE 2022
MCQ (Single Correct Answer)
+1
-0.33

Consider solving the following system of simultaneous equations using LU decomposition.

x1 + x2 $$-$$ 2x3 = 4

x1 + 3x2 $$-$$ x3 = 7

2x1 + x2 $$-$$ 5x3 = 7

where L and U are denoted as

$$L = \left( {\matrix{ {{L_{11}}} & 0 & 0 \cr {{L_{21}}} & {{L_{22}}} & 0 \cr {{L_{31}}} & {{L_{32}}} & {{L_{33}}} \cr } } \right),\,U = \left( {\matrix{ {{U_{11}}} & {{U_{12}}} & {{U_{13}}} \cr 0 & {{U_{22}}} & {{U_{23}}} \cr 0 & 0 & {{U_{33}}} \cr } } \right)$$

Which one of the following is the correct combination of values for L32, U32, and x1 ?

A
L32 = 2, U33 = $$ - {1 \over 2}$$, x1 = $$-$$ 1
B
L32 = 2, U33 = 2, x1 = $$ - {1 \over 2}$$
C
L32 = $$ - {1 \over 2}$$, U33 = 2, x1 = 0
D
L32 = $$ - {1 \over 2}$$, U33 = $$ - {1 \over 2}$$, x1 = 0
4
GATE CSE 2022
MCQ (More than One Correct Answer)
+1
-0.33

Consider a simple undirected weighted graph G, all of whose edge weights are distinct. Which of the following statements about the minimum spanning trees of G is/are TRUE?

A
The edge with the second smallest weight is always part of any minimum spanning tree of G.
B
One or both of the edges with the third smallest and the fourth smallest weights are part of any minimum spanning tree of G.
C
Suppose S $$\subseteq$$ V be such that S $$\ne$$ $$\phi$$ and S $$\ne$$ V. Consider the edge with the minimum weight such that one of its vertices is in S and the other in V \ S. Such an edge will always be part of any minimum spanning tree of G.
D
G can have multiple minimum spanning trees.
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12