1
GATE CSE 2015 Set 1
Numerical
+2
-0
Let G be a connected planar graph with 10 vertices. If the number of edges on each face is three, then the number of edges in G is ___________.
Your input ____
2
GATE CSE 2015 Set 1
Numerical
+2
-0
$$\sum\limits_{x = 1}^{99} {{1 \over {x\left( {x + 1} \right)}}} $$ = _____________.
Your input ____
3
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Suppose L = { p, q, r, s, t } is a lattice represented by the following Hasse diagram:
For any $$x, y ∈ L$$, not necessarily distinct, $$x ∨ y$$ and x ∧ y are join and meet of x, y, respectively. Let $$L^3 = \left\{\left(x, y, z\right): x, y, z ∈ L\right\}$$ be the set of all ordered triplets of the elements of L. Let pr be the probability that an element $$\left(x, y,z\right) ∈ L^3$$ chosen equiprobably satisfies $$x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)$$. Then
4
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The probabilities that a student passes in Mathematics, Physics and Chemistry are $$m, p$$ and $$c$$ respectively. Of these subjects, the student has $$75$$% chance of passing in at least one, a $$50$$% chance of passing in at least two and a $$40$$% chance of passing in exactly two. Following relations are drawn in $$m, p, c:$$
$${\rm I}.$$ $$\,\,\,\,\,\,$$ $$p+m+c=27/20$$
$${\rm I}{\rm I}.$$ $$\,\,\,\,\,\,$$ $$p+m+c=13/20$$
$${\rm I}{\rm I}{\rm I}.$$ $$\,\,\,\,\,\,$$ $$\left( p \right) \times \left( m \right) \times \left( c \right) = 1/10$$
$${\rm I}.$$ $$\,\,\,\,\,\,$$ $$p+m+c=27/20$$
$${\rm I}{\rm I}.$$ $$\,\,\,\,\,\,$$ $$p+m+c=13/20$$
$${\rm I}{\rm I}{\rm I}.$$ $$\,\,\,\,\,\,$$ $$\left( p \right) \times \left( m \right) \times \left( c \right) = 1/10$$
Paper analysis
Total Questions
Algorithms
6
Compiler Design
3
Computer Networks
6
Computer Organization
3
Data Structures
4
Database Management System
4
Digital Logic
4
Discrete Mathematics
12
Operating Systems
6
Programming Languages
3
Software Engineering
2
Theory of Computation
3
Web Technologies
1
General Aptitude
10
More papers of GATE CSE
GATE CSE 2024 Set 2
GATE CSE 2024 Set 1
GATE CSE 2023
GATE CSE 2022
GATE CSE 2021 Set 2
GATE CSE 2021 Set 1
GATE CSE 2020
GATE CSE 2019
GATE CSE 2018
GATE CSE 2017 Set 1
GATE CSE 2017 Set 2
GATE CSE 2016 Set 1
GATE CSE 2016 Set 2
GATE CSE 2015 Set 1
GATE CSE 2015 Set 3
GATE CSE 2015 Set 2
GATE CSE 2014 Set 3
GATE CSE 2014 Set 2
GATE CSE 2014 Set 1
GATE CSE 2013
GATE CSE 2012
GATE CSE 2011
GATE CSE 2010
GATE CSE 2009
GATE CSE 2008
GATE CSE 2007
GATE CSE 2006
GATE CSE 2005
GATE CSE 2004
GATE CSE 2003
GATE CSE 2002
GATE CSE 2001
GATE CSE 2000
GATE CSE 1999
GATE CSE 1998
GATE CSE 1997
GATE CSE 1996
GATE CSE 1995
GATE CSE 1994
GATE CSE 1993
GATE CSE 1992
GATE CSE 1991
GATE CSE 1990
GATE CSE 1989
GATE CSE 1988
GATE CSE 1987
GATE CSE
Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987